
iCC 2006 CAN in Automation

 05-10

Using FTT-CAN to the flexible control of bus redundancy
and bandwidth usage1

Valter Silva, ESTGA/DETI/IEETA - Universidade de Aveiro

José Alberto Fonseca, DETI/IEETA - Universidade de Aveiro

Joaquim Ferreira, DETI - IP Castelo Branco

Controller Area Network (CAN) is a popular and very well-known bus system, both in
academia and in industry, initially targeted to aut omotive applications as a single
digital bus to replace the wiring that were growing complexity, weight and cost with
the advent of new automotive appliances. However, r equirements have evolved and
CAN’s dependability and bandwidth limitations led t o the emergence of alternative
networks such as FlexRay and TTP/C. Nevertheless, w e believe that it is possible to
improve CAN so it could fulfill contemporary requir ements. This paper proposes the
use of Flexible Time-Triggered CAN (FTT-CAN) to inc rease the available bandwidth
while providing fault tolerance in CAN based system s with multiple buses. The
architecture and flexibility of FTT based systems e nables a tight yet flexible control of
redundancy and bandwidth usage without increasing t he complexity of the nodes. In
this novel solution, a FTT-CAN Master controls the dispatching of messages among a
set of independent buses. The Master can react onli ne to bus failures switching the
transmission of critical messages to a non-faulty b us, always keeping a pre-
determined redundancy level.

1 This work was supported by Fundação para a Ciência e Tecnologia under grant PRODEP 2001 –
Formação Avançada de Docentes do Ensino Superior Nº 200.019 and by ARTIST2, NoE on
Embedded Systems Design, (EC-IST - IST-004527).

1 Introdution

Distributed embedded systems (DES)
have been widely used in the last few
decades in several application fields,
ranging from industrial machinery to
avionics, automotive systems and
robotics. Most of these applications
require precise and fault-tolerant temporal
coordination among the nodes of the DES.
Time-triggered communication protocols
are usually adopted to fulfill this
requirement and most of these protocols
also have mechanisms to provide fault-
tolerance and online reconfiguration.
However, the inclusion of these features
also increases the computing and network
overhead thus contributing to reduce the
traffic payload and increasing the
complexity of the nodes or the protocol.
FTT-CAN [1] is a synchronous time
triggered protocol built on top of CAN. It
allows the coexistence of synchronous
and asynchronous traffic with fault-

tolerance and reconfiguration mechanisms
using just one CAN fieldbus. However, it
introduces some network overhead due to
the use of control messages. The
computational overhead introduced by the
middleware also limits the maximum bit
rate of the CAN fieldbus when nodes
based in low performance microcontrollers
are used. Thus, the CAN bandwidth is not
fully exploited in FTT-CAN, unless high
performance processors are used,
typically above 16 bit, 40 MHz.
The overhead penalty introduced by FTT
protocol, together with CAN 1 Mbps
bandwidth limitation makes, FTT-CAN
unsuitable for applications that require
higher bandwidth, e.g., video traffic.
Currently, the maximum bit rate attainable
is 250 kbps with an implementation using
PIC microcontrollers [2].
FTT-CAN is currently used in mobile
robotics applications [2]. In this application
field, the use of sensors demanding high
bandwidth and nodes with low processing

iCC 2006 CAN in Automation

05-11

power controllers is common. A
preliminary study of the bandwidth usage
of sensors in autonomous mobile robots is
presented in [3]. Some examples of robots
with sensors demanding high bandwidth
can be found there. In [4], a sonar sensor,
used for navigation, uses almost all the
bandwidth of the CAN fieldbus. Other
frequently used sensors in robotics are
video cameras which also have high
bandwidth requirements.
Systems like TTP/C [5] and FlexRay [6]
provide dependability for safety critical
applications by using a redundant
communications medium where redundant
messages are transmitted. In these
systems the redundant bus can also be
used to increase the available bandwidth
by enabling the transmission of non-
redundant traffic in the redundant buses.
However, these systems have just one
redundant bus with static offline message
scheduling.
Recent work by Pimentel [7] proposes
redundant CAN-based systems with
redundant buses, interfaces, ECUs
(Electronic Control Units) and message
transmission. A simplified middleware
interfaces with the application, taking care
of the redundant message transmission
and of selecting one of the redundant
messages received. An example of a
steering by wire system [8] is used for
demonstration purposes. This solution,
however, does not increase the total
available bandwidth. In this paper we
propose to take advantage of FTT-CAN
flexibility and synchronization properties,
to combine fault-tolerance with bandwidth
increase. This is done by using N
redundant buses in which the traffic is
scheduled on-line by a FTT-CAN Master.
Depending on the application, it is possible
and easy to implement features that
contribute to manage fault-tolerance and
bandwidth usage such as to control
redundant transmission of critical
messages, to react to bus failures keeping
a K-level redundancy, to use the available
buses in the absence of failures to
transmit non-critical traffic, to switch on-
line to degraded operation modes in the
presence of bus failures. This is done with
a limited increase in the complexity of the
FTT-CAN Master and a very slight

increase in the complexity of the Stations
(also know as slaves). It should be noticed
that, although this proposal increases the
responsibility of FTT-Masters in what
concerns fault-tolerance management,
they have already been object of extensive
work concerning their own dependability
[9]. Thus, the proposed solution relies in
components which are rather robust from
the dependability point of view.
This paper is a follow-up of the work
presented in [15] and presents a solution
to implementation the master node using a
desktop computer with a PCI CAN board.
The rest of the paper is organized as
follows:
In the next section the FTT-CAN paradigm
is briefly presented and discussed. In
section 3 the problem of FTT-CAN
bandwidth limitation is presented and in
section 4 a solution for this problem is
presented. In section 5, techniques for
dispatching trigger messages are
discussed based on previous approaches.
In section 6 the master implementation
using a PC with a PCI-CAN board is
discussed. Finally, the paper ends with
conclusion section.

2 FTT-CAN brief presentation

The FTT-CAN protocol (Flexible Time-
Triggered communication on CAN) [1] has
been developed with the main purpose of
combining a high level of operational
flexibility with timeliness guarantees. It
uses the dual-phase elementary cycle
concept for isolated time and event-
triggered communication. The time-
triggered traffic is scheduled on-line and
centrally in a particular node called a
master, facilitating on-line admission
control of requests, thus being managed in
a flexible way, under guaranteed
timeliness. The protocol relies on a
relaxed master-slave medium access
control in which the same master message
triggers the transmission of messages in
several slaves simultaneously
(master/multi-slave). The eventual
collisions between slaves’ messages are
handled by the native distributed
arbitration of CAN.
The next figure depicts the general
architecture of the system. Note that more

iCC 2006 CAN in Automation

 05-12

than one master and more than one
station can be used to provide
redundancy.

Master
Node

Bus

Station
Node

Station
Node

Station
Node

Station
Node

Figure 1: General architecture

FTT-CAN slots the bus time in consecutive
Elementary Cycles (ECs) with fixed
duration. All nodes are synchronized at the
start of each EC by the reception of a
particular message known as an EC
trigger message (TM), which is sent by the
master node. Within each EC the protocol
defines two consecutive windows,
asynchronous and synchronous, that
correspond to two separate phases (see
figure 2). The first is used to convey event-
triggered traffic, here called asynchronous
because the transmission requests can be
issued at any instant. The second is used
to convey time-triggered traffic, herein
called synchronous because its
transmission occurs synchronously with
the ECs. The synchronous window of the
nth EC has a duration that is set according
to the traffic scheduled for it. The schedule
for each EC is conveyed by the respective
EC trigger message (see figure 3). Since
this window is placed at the end of the EC,
its starting instant is variable and it is also
encoded in the respective EC trigger
message.
The communication requirements are held
in a database located in the master node
[10], the System Requirements Database
(SRDB). This database holds several
components, one of which is the
Synchronous Requirements Table (SRT),
that contains the description of the
periodic message streams. Based on the
SRT, an on-line scheduler builds the
synchronous schedules for each EC (EC
schedules). These schedules are then
inserted in the data area of the appropriate
EC trigger message (see Figure 3) and
broadcasted with it. Due to the on-line
nature of the scheduling function, changes
performed in the SRT at run time will be
reflected in the bus traffic within a
bounded delay, resulting in flexible
behaviour.

AMaTM AMb AMc α SMa SMb SMc TM

LTM law(n) lsw(n)

LEC
nth EC

EC Trigger
Message

SMd

Asynchronous
window

Synchronous
window

Legend:

LEC – Lenght of elementary cycle

LTM – Lenght of trigger message

law – Lenght of assynchronous window

las – Lenght of synchronous window

AM – Assynchronous message

– Inserted Idle time (for windows separation issues)α

Figure 2: The elementary cycle in FTT-

CAN

TM SM1 TM

Elementary Cycle (EC)

EC Trigger
Message

SM2 SM4 SM13

0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 00 0

bit 13 bit 4 bit 2 bit 1

Synchronous messages

...

Trigger message data field (EC-schedule)

Figure 3: Master/multislave access
control and EC schedule coding
scheme

It should also be noticed that, in FTT-
based systems, the slave nodes are not
allowed to retransmit synchronous
massages affected by errors, to prevent
cascading transmission errors [11].

3 The bandwidth problem

In CAN 2.0A, the frame has 11 bits for
message identification, 57 bits for control
and stuff bits.
A message with the maximum length (8
Byte) can have 132 bits [12] including all
the stuff bits, control and identification.
Thus, with a usable data of 64 bits, the
message occupies 132 bits, leading to an
overhead of more than 50%. If the CAN
message is 1 byte long, the payload is just
8 bits in a message which can be 62 bits
in total, leading to an overhead of 87%.
This means that, if a 1Mbps rate is used in
the fieldbus, in the better case, just 500
kbps are available for payload data. This

iCC 2006 CAN in Automation

05-13

analysis is even worse when using FTT-
CAN.
The FTT-CAN protocol uses a CAN
network which can run up to 1 Mbps.
Therefore, like said previously, some of
the available bandwidth is dedicated to the
CAN protocol overhead. The FTT-CAN
protocol also increases this overhead
because it needs a synchronization
message every Elementary Cycle. The
overhead of the trigger message is 2.6%
for a bit rate of 1Mbps and a Trigger
message with 8 data bytes, and an EC of
5 ms. For the same parameters, but using
125 kbps, the overhead of the trigger
message is 21.1%. For 250 kbps the
trigger message overhead is about 10%.
This bit rate is the limit in the reference
implementation in PIC microcontrollers
running at maximum speed.
The available bandwidth in the CAN
fieldbus is also limited by the bus length.
The maximum length for a bus running at
1 Mbps is 40 m. This limitation can be
important if the bus will be used in an
industrial environment or in an aircraft.
The CAN bus is not error free. In [13] bit
errors assessment is made.
On the other hand, fault tolerance
techniques developed for FTT-CAN do not
contemplate bus failures, they just solve
the problem of the failure of the master(s)
and of protecting the bus from incorrect
transmission made by the slaves [11], [14].
Thus, if the bus fails, all the system fails.

4 Proposed architecture for redundancy and
bandwidth improvement

To overcome the limitations referred in the
last section, a novel architecture capable
of handling synchronous messages
replication has been proposed by Silva et
al. [15].
The system architecture is presented in
next figure.

Master
Station
node

Station
Node

Station
Node

Station
Node

Bus 1
Bus 2
Bus 3
Bus 4

 Figure 4: System architecture

In figure 1 the general architecture of the
first release of FTT-CAN is presented. In
this novel architecture more than one bus
is used to permit redundant messages
sending the same message in several
buses. Moreover, the buses can be used
to increase the available bandwidth
available in the system sending different
messages in different buses.
Note that the master node connects to all
the buses in order to control all of them.
However, due to communications
requirements or even due to economical
reasons, the slave nodes can connect to
just one bus or a set of buses. In case
salve nodes are connect to just one bus,
they are unable to take advantage of
improved bandwidth (to send redundant
messages or to send different messages).
However, they are simple and can be
equal to the nodes used in the first release
of the FTT-CAN.
The master redundancy techniques
presented before by Ferreira et. al. [16] is
still valid in the proposed architecture. It is
still possible to use slave redundancy and
bus guardians. However in this paper no
further considerations on this issue will be
made.
The hardware architecture of the new
system is presented in Figure 5.

CAN
controller 1

CAN
controller N

...

Master Node

CAN
controller 1

CAN
controller N

...

Station Node 2

CAN Bus 1

CAN Bus N

CAN
controller 1

CAN
controller N

...

Station Node 1

...

FTT Master Middleware

Application

FTT Slave Middleware

Application

FTT Slave Middleware

Application

 Figure 5: Hardware architecture

Each node (Master or Slave) has a layer
(FTT layer) responsible for the
management of the available CAN
controllers while providing services to the
application layer. These services in the
master node are to manage the
synchronous messages and in the slaves
is the management of the synchronous
and asynchronous messages.
As presented in Figure 3 the master node
must issue Trigger Messages to the bus.
These messages are for time slotting and
contain the information about the
synchronous messages that will be

iCC 2006 CAN in Automation

 05-14

transmitted in the current Elementary
Cycle.

5 Trigger message dispatching

If just one CAN bus is used, the master
schedules the messages and, after,
dispatch the Trigger Message to the bus. If
more than one bus is used the master
must issue a trigger message per each
bus it is connected to. In this case several
approaches can be used for the
dispatching of the trigger messages and
the meaning of the trigger flags [15]. For
this paper we assume the use of a
different trigger message in each bus. This
means that each bus can be viewed at a
self contained bus improving the flexibility
for scheduling made by the master.
For the trigger flags, also, several
approaches can be used. To have an
efficient use of the available trigger flags
the strategy we will use further in this
document is each trigger flag has an
independent meaning in each bus. The
next figure presents an example of this
strategy using three buses.

Bus 1

Bus 2

TM
0A

SM
2

TM
1A

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

SM
1

SM
0

TM
0B

TM
1B

...

lsw (1)=lswmax(1)

Bus 3

TM
0C

TM
1C

0 0 0 0 1 0 0 0...

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1...

SM
4

SM
3

SM
1

SM
7

SM
6

SM
5

1 1 1 0 0 0 0 1

SM
0

lsw (2)=lswmax(2)

SM
0

SM
11

lsw (3)=lswmax(3)

Figure 6: Trigger message format and

dispatching

In the figure 6, trigger flag 0 is issued in
the three buses. This means, the
corresponding producer of message with
identifier 0 in bus 1 must send the
message in the current EC. However,
other producer, or the same, must send a
message with identifier 0 in the bus 2. This
message can be the same message as in
bus 1, or not. This means that each

message is identified by its CAN
identification and the bus where it is send.
Thus, the redundancy control and replica
management are performed by the
application layer (see Figure XXX) and is
not responsibility of the FTT layer. The
application is responsible for the correct
use of the available buses and CAN
identifiers. Moreover, the application must
have a-priori knowledge of the buses the
nodes are connected to (please recall that
the slaves can connect to just one bus or a
set of buses). However, they must connect
to all available buses in order to control
the total bandwidth in the system.

6 Master implementation

The available slaves for the first release of
FTT were developed in a Microchip
PIC18F258. This microcontroller provides
32Kb of Flash memory, 1.5Kb of RAM
memory and one CAN controller. The
master was also implemented in this
microcontroller. However, because it just
has one built-in CAN controller this
microcontroller is not suitable for the
master of the new FTT-CAN
implementation. It is necessary a
microcontroller with more than one built-in
CAN controller, or an external CAN
controller that can be connected to the
microcontroller. Connecting an external
controller requires more software and
hardware, low latency access to the
internal registers of the controller, and so,
we will not considerer this option further.
The slaves can use just one bus thus, the
same hardware platform was used in the
scope of this work.
The master for the present version was
implemented in a desktop computer with a
PCI-CAN board from EMS [17]. This board
connects to the PCI bus of the computer
and has two Philips SJA1000 CAN
controllers.
The Desktop computer runs the RTAI with
2.6.9 kernel and Linux operation system
(Fedora Core 3 distribution). RTAI is a
freeware application interface with real
time support for Linux.
The global architecture of the software is
presented in Figure 7.

iCC 2006 CAN in Automation

05-15

Scheduler 1
Time

generator

Synchronous
requirement

table 1

Synchronous
requirement

table 2

Dispatcher 1 Dispatcher 2

CAN controller 1 CAN controller 2

PCI Board

RTAI-Linux
operation system

CAN Bus

CAN Bus

Scheduler 1

Real-Time
CAN Board Driver

Figure 7: General master architecture

The master node has a Synchronous
Requirement Table, a Scheduler and a
Dispatcher per each available CAN
controller. Both the dispatchers and the
scheduler work independently from each
other.
Based on the synchronous requirements,
the schedulers build an independent
schedule for the next EC. The dispatchers,
using the time information provided by the
timer generator, dispatch the different
trigger messages in each bus the same
time.
The RTAI operation system provides
functionalities for task and time
management, for accessing to the PCI bus
and to manage the hardware interrupts.
The schedulers and the dispatchers were
developed in the kernel space to have
minimum interference from the operation
system and application interference.
The timer manager is a periodic task
which triggers the dispatcher that, in turn,
triggers the scheduler to build the
schedule for the next Elementary Cycle.
The real-time driver for the PCI CAN board
was developed in the kernel space using
the facilities of the RTAI application
interface to access to PCI bus and to
manage the hardware interrupts.

Currently, we are assessing the
performance of the master implementation
in the PC, using the PCI-CAN board.
Some experiments to measure the time
difference between two “parallel” trigger
messages are being designed. The
computing time of two “parallel” scheduling
operations is also being assessed.

7 Conclusions

This paper presents a new architecture to
improve the bandwidth and the fault-
tolerance of FTT-CAN. To achieve this
objective, several CAN buses were used,
either transmitting the same message in
different buses (spatial redundancy) or
different messages in different buses,
increasing the available bandwidth.
The slaves can be the same used in the
early version of FTT-CAN, with just one
CAN controller. Thus, the total available
bandwidth is not used by each slave
individually. Moreover, the slaves also can
use more than one bus to transmit in more
than one bus. However, if just one bus is
used, the slaves remain simple (are the
same of the early versions of FTT-CAN)
and with low price.
On the other hand, the master node must
control all the available buses. Thus, a
processor or microcontroller with more
than one CAN bus or an external controller
is necessary to develop it. In this work a
desktop computer with a PCI CAN board
have been used. The implementation of
the master firmware is done using the
functionalities provided by RTAI to
manage timer, the PCI bus and the
hardware interrupts.
In the future, the implementation of the
slave nodes will be done in a desktop
computer. The slave node and the master
will be implemented in a low cost
microcontroller from microchip, the dsPIC
30F6012A, which has 2 built in CAN
controllers.

iCC 2006 CAN in Automation

 05-16

References

[1] Almeida, L., Pedreiras, P., Fonseca, J.A.G.,
“The FTT-CAN protocol: Why and how”,
IEEE Transactions on Industrial Electronics,
Volume 49, Issue 6, Dec. 2002, pp. 1189-1201.

[2] Silva, V., Marau, R., Almeida, L., Ferreira, J.,
Calha, M., Pedreiras, P., Fonseca, J.,
“Implementing a distributed sensing and
actuation system: The CAMBADA robots case
study”, in Proc. ETFA 2005, September 2005,
pp. 781-788.

[3] Silva, V., Fonseca, J., Nunes, U., Maia, R.,
“Communications Requirements for
Autonomous Mobile Robots: Analysis and
Examples”, in Proc. FeT 2005, November
2005, pp. 91-98.

[4] Mendes, A., “Detecção e seguimento de alvos
com Laser Range Finder”, MsC Thesis,
University of Coimbra, 2004.

[5] Kopetz, H., Grunsteidl, G., “TTP-A protocol
for Fault-Tolerant Real-Time Systems”,
computer, vol. 27, issue 1, Jan 1994, pp 14-23.

[6] FlexRay, “FlexRay Communications System
Protocol Specification”, version 2.1, 2005.

[7] Pimentel, J., “Safety-Riability of Distributed
Embedded Systems Fault Tolerant Units”, in
Proc. IECON 2003, November 2003, vol. 1,
pp. 945-950.

[8] Pimentel, J., “An Architecture for a Safety-
Critical Steer-by-Wire System”, SAE congress
2004, paper nº 0714.

[9] Ferreira, J., Pedreiras, P., Almeida, L.,
Fonseca, J., Achieving fault tolerance in FTT-
CAN”, in Proc. WFCS 2002, August 2002, pp.
125-132.

[10] P. Pedreiras, “Supporting Flexible Real-Time
Communications on Distributed Systems”,
PhD Thesis, University of Aveiro, Portugal,
July, 2003.

[11] Ferreira, J., “Fault-Tolerance in Flexible Real-
Time Communications Systems”, PhD Thesis,
Univerisity of Aveiro, 2005.

[12] Nolte, T.; Hansson, H.; Norstrom, C.,
“Probabilistic worst-case response-time
analysis for the controller area network”, In
Proc. 9th IEEE Real-Time and Embedded
Technology and Applications Symposium,
May 2003, pp. 200-207.

[13] Ferreira, J., Oliveira, A., Fonseca, P., Fonseca,
J., “An Experiment to Assess Bit Error Rate in
CAN”, in Proc. RTN 2004, pp. 15-18.

[14] Marau, R., Silva, V., Ferreira, J., Almeida, L.,
“Assessment of FTT-CAN master replication
mechanisms for safety-critical applications” to
appear in SAE congress 2006, paper nº 06AE-
278.

[15] Silva, Valter F., Fonseca, José A., “Using FTT-
CAN to combine redundancy with increased
bandwidth”, In proc. of 2006 IEEE
International Workshop on Factory
Communications Systems, pp. 55-63.

[16] Ferreira, J., Almeida, L., Fonseca, J. A.,
Pedreiras P., Martins, E., Rodríguez-Navas,
Rigo, J., Proenza, J., “Combining Operational
Flexibility and Dependability in FTT-CAN,”
IEEE Transactions on Industrial Informatics,
vol. 22, no. 2, May 2006.

[17] EMS web site. available at: http://www.ems-
wuensche.com/

