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The complexity of electronic control functions of agricultural machines has been 
increasing dramatically over the past years. Some of these changes have been driven by 
statutory provisions like emission related legislation. The introduction of additional 
sensors and actuators as well as additional control mechanisms has driven the increase 
of internal complexity of subsystems such as engines. The external interface of such 
subsystems is becoming more complex as well; even if only a few of CAN messages are 
required to integrate such subsystems into an agricultural machine. Besides engines, 
there are other subsystems such as positioning/navigation systems, electric drives, etc. 
that will create a very similar situation. In addition, the electronic architecture will no 
longer be determined by the agricultural machine manufacturer. Therefore, the internal 
communication of each subsystem might be based on different communication 
protocols and mechanisms. 
One of the biggest challenges that these complex subsystems pose is the ever 
increasing difficulty faced by service technicians to support these systems during their 
complete lifecycle.  Since agricultural machines are typically used in rural areas without 
a tight network for subsystem service and support, this task has typically become the 
job of the service department of the machine manufacturer. Therefore the integration of 
subsystem diagnostics into a machine service tool becomes more important than ever 
before. In this paper, different approaches to share diagnostic knowledge will be 
described, which are based on experiences with such complex systems. The main 
challenge is providing access to a few internal signals on the same or different 
communication protocols, and sharing test sequences and flash download procedures 
for integration into the service tool. The integration of these subsystems is limited by the 
underlying technology of the service tool. The usage of standardized methods like ODX 
(ISO 22901) for the description of diagnostic data/signals and upcoming standards like 
OTX (ISO 13209) for the description of test sequences can ease the integration process 
significantly. 
 
In order to explore the methodology for the 
integration of subsystem diagnostics into a 
machine service tool, two different use 
cases are described.  These use cases are 
examples of real issues that machine 
manufacturers face regarding their suppliers 
of subsystems and the task of integrating 
their respective diagnostics. While these use 
cases do not encompass every possible 
scenario, they serve to illustrate the possible 
complexity of the system and the types of 
issues that could arise, as well as 
demonstrate how the described approach 
and methodology for the solution can be 
applied to the different situations. 
 

Use Case Descriptions 
 
In the first scenario examined, a machine 
manufacturer might obtain one type of 
subsystem from different suppliers 
depending on the type of machine being 
developed.  For example, a manufacturer of 
agricultural tractors might have a range of 
tractors of different sizes and capabilities. 
The manufacturer uses engines from 
different suppliers for the different classes of 
tractors that it produces to best suit their 
needs and specifications.  In this example, 
the engines, while they might be different 
and come from different suppliers, represent 
one type of subsystem.   
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Since the different engines all represent the 
same type of subsystem, the goal of the 
engine manufacturer is to create one 
diagnostic tool for this subsystem which will 
be the same to the end user (technician) for 
every machine that is equipped with this 
type of subsystem, regardless of the specific 
supplier.  In this example the machine 
manufacturer wants every vehicle to have 
the same engine diagnostic tool 
independent of what kind or brand of engine 
each vehicle contains.  This concept is 
illustrated in Figure 1.   
 

 
Figure 1:  Use case 1, one engine 
diagnostic tool for multiple engines 
 
Each of the different engines contains a set 
of diagnostic information that is common 
among the different suppliers, brands, and 
models.  This is the information that will 
used by the engine diagnostic tool created 
by the machine manufacturer.  This concept 
can be further generalized – each type of 
subsystem contains a set of information 
used for diagnostics that is common among 
the different suppliers of the same type of 
subsystem.  Therefore, in theory, a general 
diagnostic tool for each type of subsystem is 
possible regardless of the specific supplier 
of the individual subsystems. 
 
The second use case deals with a machine 
manufacturer that requires different 
components or subsystems from several 
different suppliers.  For example, the 
manufacturer of an agricultural tractor might 
use an engine from supplier A, a joystick 
from supplier B, steering column from 
supplier C, etc…  Each of these different 
subsystems (engine, joystick, steering 
column, etc…) is controlled by its own ECU, 
and each contains its own set of diagnostic 

subfunctions.  The goal for the agricultural 
machine manufacturer is to be able to 
integrate all of the different diagnostic 
subfunctions into one diagnostic tool such 
that the end user does not need to access 
each subsystem individually using a 
different tool for each one.  This concept is 
illustrated in Figure 2. 
 

 
Figure 2:  Use case 2, one diagnostic 
tool for multiple subsystems 
 
In order to be able to integrate the different 
diagnostic subfunctions from all of the 
different subsystems on the machine, there 
needs to be a sort of standardized 
mechanism to access the diagnostic 
subfunctions.  This could potentially be a 
problem if the suppliers of the subsystems 
do not provide information regarding the 
subfunctions in a standardized way. 
 
Best Case Scenario 
 
The two use cases described illustrate real 
challenges that are faced by machine 
manufacturers today.  This is especially true 
as the complexity of these machines 
increases.  One commonality between these 
two scenarios is the machine manufacturer’s 
goal to be able to combine all diagnostic 
functions into a single diagnostic tool.  
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This tool should be able to handle diagnostic 
subfunctions related to a single subsystem 
regardless of the supplier, as well as the 
diagnostic subfunctions of the different 
subsystems present in the machine.  The 
key to achieving such goal is the use of 
standardized communication data formats 
and interfaces.  These include D-PDU API, 
ODX, and, OTX. 
 
The Diagnostic Protocol Data Unit 
application programing interface (D-PDU 
API) is specified in the standard ISO 22900 
and it is a modular vehicle communication 
interface (MVCI) protocol module.  This 
standard describes a generic software 
interface which provides a “plug-and-play” 
functionality for different communication 
protocols.  The interface connects the 
diagnostic information gathered through 
these different protocols to a standard D-
server, the MCD-3 D server.  This server 
then uses information regarding the data 
descriptions found in the ODX files and 
provides interpreted, symbolic information to 
the diagnostic application.  The purpose of 
this interface, the D-PDU API, is to ensure 
that diagnostic and reprogramming 
applications from any vehicle or subsystem 
manufacturer can operate on a common 
software interface [3]. 
 
As mentioned above, ODX files contain 
information regarding the interpretation of 
diagnostic data pertaining to the different 
ECU’s.  Developed by the Association for 
Standardization of Automation and 
Measuring Systems, the Open Diagnostic 
Data Exchange (ODX) specification is used 
to describe and exchange vehicle and ECU 
diagnostic information such as diagnostic 
trouble codes, identification data, input 
/output parameters, and communication 
parameters.  ODX is a machine-readable 
data format based on Extensible Mark-up 
Language (XML), and is independent of 
specific vehicle diagnostic protocols such as 
KWP 2000, UDS, or SAE J1939.  ODX is 
designed to describe the following: protocol 
specifications for diagnostic communication 

of ECUs, communication parameters for 
different protocols, data link layers and ECU 
software, ECU programming data (Flash), 
related vehicle interface descriptions 
(information about connectors and pinout), 
functional description of diagnostic 
capabilities of a network of ECUs, and ECU 
configuration data (variant coding) [1-2].  
This data format is designed to provide a 
standard way to describe and communicate 
diagnostic data independently of 
manufacturer, testing hardware, and 
protocol software, making it ideal for 
communicating diagnostic functions in an 
agricultural machine which contain multiple 
subsystems. 
 
In the best case scenario, OTX files are 
used as the final step, connecting the raw 
data to the diagnostic application. The Open 
Test Sequence Exchange (OTX) format, 
which is described in the ISO 13209 
standard, is an XML based exchange format 
for diagnostic test sequences.  The OTX 
format is used to describe in a formal way 
the diagnostic sequences which can be 
executed as part of a diagnostic session. 
The goal of OTX is to provide a standard 
way for manufacturers to describe and 
exchange these test sequences.  The 
structure of these sequences is described in 
schemas that make it easy to follow, 
understand, and implement [4]. 
 
The use of these standards together forms a 
modular structure and mechanism to 
communicate diagnostic information from 
the lowest level all the way up to the 
diagnostic tool.  This structure, illustrated in 
Figure 3, allows for the ease of integration of 
diagnostic information from different 
subsystems and different manufacturers.  
This structure forms the basis of the solution 
to the use cases described above.   
 
The methodology involved is as follows.  
Information requested by the diagnostic tool 
is processed by the OTX layer where it is 
matched to a specific diagnostic sequence.  
This test sequence then passes through the 
MCD-3 D server where the appropriate 
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information related to the data required is 
obtained from the ODX file.   
 

 
Figure 3: Structure for communication of 
diagnostic information using standards 
 
Next, the transformed request passes down 
into the D-PDU API layer where, with the 
descriptions provided by the ODX file, the 
request is formatted such that it 
communicates to the correct ECU on the 
bus through the appropriate protocol.  
Similarly, when there is a response from the 
ECU,	   the information is passed up through 
the protocol stack and is collected in the D-
PDU API.  From here it goes up through the 
MCD-3 D server where the data is matched 
to their corresponding descriptions pulled 
from the ODX file.  This information is then 
sent up to the diagnostic tool. 
 
Applying this methodology to the use cases 
described above yields very similar models.  
In the first use case, the machine 
manufacturer wants to integrate the 
diagnostic functions of a specific type of 
subsystem which is obtained from different 
suppliers into one diagnostic tool.  The 
manufacturer wants to use this tool to be 
able to handle the diagnostics of that 

subsystem regardless of which supplier it 
comes from.  The solution for this use case 
is exemplified with the tractor engine as the 
subsystem, and is illustrated in Figure 4.  In 
this model, the suppliers of the different 
engines used by the manufacturer 
(Suppliers A, B, and C) provide the 
corresponding OTX and ODX files for their 
engine ECUs.  In these files, the diagnostic 
data and test sequences are described in a 
standard, machine readable format.  The 
engine ECU ODX and OTX files are placed 
in libraries as part of the overall diagnostic 
software architecture of the machine 
manufacturer’s diagnostic system.  These 
files are then retrieved from the libraries 
when needed depending on which engine is 
being used.  This way the manufacturer can 
have a single software architecture that can 
handle multiple variations of the same 
subsystem. 
 

 
Figure 4: Schematic of best case 
scenario solution for use case 1 
 
The solution for use case 2 is similar to that 
of use case 1.  In the second use case, the 
machine manufacturer wants to integrate 
the diagnostic subfunctions that correspond 
to the different subsystems used in the 
machine into a single machine diagnostic 
tool.  For example, the machine might 
include an engine, a joystick, and a steering 
column from different suppliers, all equipped 
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with their respective ECUs.  Similar to the 
first use case solution, the solution to this 
use case involves the suppliers of the 
different subsystems providing the 
corresponding ODX and OTX files.  Figure 5 
illustrates the architecture of this solution. 
 

 
Figure 4: Schematic of best case 
scenario solution for use case 2 
 
The ODX and OTX files are again stored 
into libraries that become part of the 
software architecture of the diagnostic tool.  
From these libraries, the ODX and OTX files 
associated with each ECU are retrieved 
when required.  The use of these libraries in 
this use case builds on the concept 
described in the first solution in that these 
libraries not only contain ODX and OTX files 
related to different subsystems, they also 
contain the ODX and OTX files for the 
different variations of each subsystem.  This 
way, the machine manufacturer is able to 
create one diagnostic tool that can be used 
for the entire machine.  For example, using 
ODX and OTX files provided by the different 
suppliers, a manufacturer of agricultural 
tractors is able to create a single diagnostic 
tool which can be used for all of the different 
tractors he produces. 
 

Real World Case 
 
The solutions for the use cases described 
thus far are the best case scenario 
solutions.  This is because they assume that 
for each subsystem, a corresponding ODX 
and OTX file is provided.  In the ‘real world’ 
however, this is not always the case.  It is 
very common for subsystem suppliers not to 
provide diagnostic information in these 
standard formats. The reasons for this 
depend on the supplier; several examples 
are detailed as follows. 
 
Very often subsystem suppliers do not use 
these standardized formats because they do 
not want the machine manufacturer to have 
access to their proprietary knowledge and 
technology; they want their knowledge to 
stay hidden.  They do this by using 
proprietary communication protocol .dll’s 
which are not supported by the D-PDU 
application programming interface.  Some 
suppliers do not provide ODX and OTX files 
because their diagnostic subfunctions use 
specialized communication formats.  For 
example, the diagnostic subfunctions of the 
subsystem might communicate via a serial 
interface such as RS232 instead of CAN.  
Lastly, some suppliers fail to use standards 
such as ODX and OTX simply because they 
do not have enough time during the 
development process or because they have 
been using a specific way of describing data 
and they do not want to change the way 
things have always been done. 
 
Regardless of the reason, when suppliers 
do not provide ODX and OTX files, the task 
of integrating the subsystems’ diagnostics 
into a machine diagnostic tool becomes 
more difficult, although still possible.  The 
solution in these cases involves constructing 
ODX files from the data descriptions 
provided by the subsystem supplier, and by 
making ‘wrappers’ or specialized interfaces 
which allow for proprietary or non-standard 
communication formats to interface with a 
standard protocol such as UDS.  Hardcoded 
within these wrappers is information 
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regarding diagnostic test routines which can 
be used with the built-in UDS function 
routine controls. 
 
To explore this methodology, the solutions 
to both use cases are again examined. Use 
case 1 is modified in this scenario to 
encompass two engine ECUs (from 
suppliers B and C) which communicate 
using proprietary protocol .dll’s.  The engine 
ECU from supplier A in this scenario 
communicates through a serial interface 
such as RS232.  For the sake of exploring a 
real world solution, none of the engine 
suppliers provide ODX or OTX files.  The 
solution to this modified use case is 
illustrated in Figure 5. 
 

 
Figure 5: Schematic of real world 
solution for use case 1 
 
The architecture of the solution for use case 
1 includes ODX files which are created by 
the machine manufacturer from the 
description data of the ECUs provided by 
suppliers A, B, and C. Wrappers are also 
created for each proprietary protocol .dll, as 
well as for the RS232 interface, which will 
allow for these non-standard formats to 
interface with a standard protocol – i.e. 
UDS. 

Use case 2 is also modified to demonstrate 
how the solution architecture must be 
changed in the case that the suppliers of 
different subsystems do not provide ODX 
and OTX files.  This solution is illustrated in 
Figure 6. 
 

 
Figure 6:  Schematic of real world 
solution for use case 2 
 
In the modified use case 2, the machine 
manufacturer’s diagnostic tool has to be 
able to integrate subfunctions from different 
subsystems provided by the same or 
different suppliers without having been 
provided with ODX or OTX files.  Some of 
the ECUs might use proprietary protocol 
.dll’s, others might use other forms of 
communication such as RS232. The 
solution for their integration is based on the 
same principals as in the solution for use 
case 1.  ODX files are constructed from the 
information provided for each ECU and are 
stored in an ODX library.  The MCD-3 D 
server then retrieves from this library the 
appropriate ODX file as required.  
Furthermore, wrappers which include 
hardcoded information regarding diagnostic 
test routines are created to interface 
proprietary protocol .dll’s and other 
communication formats with the UDS 
standard protocol. 
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Conclusion 
 
The complexity of agricultural machines has 
been and continues to increase allowing 
them to accomplish more tasks in a more 
efficient manner.  Unfortunately, as the 
machine complexity increases, so does the 
complexity of the electronic control functions 
within the machine.  This poses an ever 
growing challenge for service technicians to 
provide support for the machine throughout 
its lifecycle.  One way to facilitate this task is 
for the machine manufacturer to create a 
diagnostic tool which is capable of carrying 
out all of the diagnostic subfunctions related 
to the different subsystems on the machine.  
This way the service technician can use one 
tool to diagnose any problem on the 
machine rather than having to use a variety 
of specialized tools for the many different 
types and/or suppliers of subsystems.  
 
To this end, two different use cases were 
described which exemplify common 
integration problems that machine 
manufacturers are faced with.  The solutions 
to these use cases demonstrate the 
underlying software architecture which 
allows for the integration of the diagnostic 
functions of all subsystems into a single 
diagnostic application.  These solutions 
have been divided into two situations: the 
best case scenario, and the less favorable, 
real world scenario.   
 
In the best case scenario, the suppliers of 
the subsystems provide the machine 
manufacturer information describing the 
diagnostic information and routines 
associated with their ECUs in formal, 
standardized ways – ODX and OTX.  The 
use of these standards along with 
standardized communication interfaces 
allows for a “plug-and-play” architecture built 
for ease of integrating ECUs.  Unfortunately, 
in the real world, the circumstance is not 
always the best case scenario.  It is 
common for subsystem suppliers to fail to 
provide ODX and OTX files.  Reasons for 
this include, among others, the supplier 

wanting to hide proprietary information, the 
subsystem diagnostic functions of the 
supplied ECUs use non-standard forms of 
communication, or the supplier does not 
have enough time/incentive to conform to 
these standards.  In these situations, 
standardize communication interfaces are 
still used as part of the solution.  ODX files 
and wrappers are created using the 
information provided by the suppliers in 
order to communicate via the standard 
communication interfaces. 
 
These solutions illustrate that the real key to 
integrating different subfunctions into one 
diagnostic tool is to use standardized 
communication interfaces and methods of 
describing diagnostic information.  Using 
standards allows for a modular architecture 
which is capable of being adapted to 
different situations.  By having a modular 
schema, the machine manufacturer is able 
to incorporate subsystems from any supplier 
into one diagnostic application without 
having to completely rework his solution 
each time a new ECU is added.  Not only is 
this system is much easier for the 
manufacturer to work with, it is also robust 
and future-proof. 
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