
MMC 2013 CAN in Automation

05-12

Service Complex System

Juan Aguilar, Gerd Bottenbruch (Sontheim Industrial Electronic, Inc.)

The complexity of electronic control functions of agricultural machines has been
increasing dramatically over the past years. Some of these changes have been driven by
statutory provisions like emission related legislation. The introduction of additional
sensors and actuators as well as additional control mechanisms has driven the increase
of internal complexity of subsystems such as engines. The external interface of such
subsystems is becoming more complex as well; even if only a few of CAN messages are
required to integrate such subsystems into an agricultural machine. Besides engines,
there are other subsystems such as positioning/navigation systems, electric drives, etc.
that will create a very similar situation. In addition, the electronic architecture will no
longer be determined by the agricultural machine manufacturer. Therefore, the internal
communication of each subsystem might be based on different communication
protocols and mechanisms.
One of the biggest challenges that these complex subsystems pose is the ever
increasing difficulty faced by service technicians to support these systems during their
complete lifecycle. Since agricultural machines are typically used in rural areas without
a tight network for subsystem service and support, this task has typically become the
job of the service department of the machine manufacturer. Therefore the integration of
subsystem diagnostics into a machine service tool becomes more important than ever
before. In this paper, different approaches to share diagnostic knowledge will be
described, which are based on experiences with such complex systems. The main
challenge is providing access to a few internal signals on the same or different
communication protocols, and sharing test sequences and flash download procedures
for integration into the service tool. The integration of these subsystems is limited by the
underlying technology of the service tool. The usage of standardized methods like ODX
(ISO 22901) for the description of diagnostic data/signals and upcoming standards like
OTX (ISO 13209) for the description of test sequences can ease the integration process
significantly.

In order to explore the methodology for the
integration of subsystem diagnostics into a
machine service tool, two different use
cases are described. These use cases are
examples of real issues that machine
manufacturers face regarding their suppliers
of subsystems and the task of integrating
their respective diagnostics. While these use
cases do not encompass every possible
scenario, they serve to illustrate the possible
complexity of the system and the types of
issues that could arise, as well as
demonstrate how the described approach
and methodology for the solution can be
applied to the different situations.

Use Case Descriptions

In the first scenario examined, a machine
manufacturer might obtain one type of
subsystem from different suppliers
depending on the type of machine being
developed. For example, a manufacturer of
agricultural tractors might have a range of
tractors of different sizes and capabilities.
The manufacturer uses engines from
different suppliers for the different classes of
tractors that it produces to best suit their
needs and specifications. In this example,
the engines, while they might be different
and come from different suppliers, represent
one type of subsystem.

MMC 2013 CAN in Automation

05-13

Since the different engines all represent the
same type of subsystem, the goal of the
engine manufacturer is to create one
diagnostic tool for this subsystem which will
be the same to the end user (technician) for
every machine that is equipped with this
type of subsystem, regardless of the specific
supplier. In this example the machine
manufacturer wants every vehicle to have
the same engine diagnostic tool
independent of what kind or brand of engine
each vehicle contains. This concept is
illustrated in Figure 1.

Figure 1: Use case 1, one engine
diagnostic tool for multiple engines

Each of the different engines contains a set
of diagnostic information that is common
among the different suppliers, brands, and
models. This is the information that will
used by the engine diagnostic tool created
by the machine manufacturer. This concept
can be further generalized – each type of
subsystem contains a set of information
used for diagnostics that is common among
the different suppliers of the same type of
subsystem. Therefore, in theory, a general
diagnostic tool for each type of subsystem is
possible regardless of the specific supplier
of the individual subsystems.

The second use case deals with a machine
manufacturer that requires different
components or subsystems from several
different suppliers. For example, the
manufacturer of an agricultural tractor might
use an engine from supplier A, a joystick
from supplier B, steering column from
supplier C, etc… Each of these different
subsystems (engine, joystick, steering
column, etc…) is controlled by its own ECU,
and each contains its own set of diagnostic

subfunctions. The goal for the agricultural
machine manufacturer is to be able to
integrate all of the different diagnostic
subfunctions into one diagnostic tool such
that the end user does not need to access
each subsystem individually using a
different tool for each one. This concept is
illustrated in Figure 2.

Figure 2: Use case 2, one diagnostic
tool for multiple subsystems

In order to be able to integrate the different
diagnostic subfunctions from all of the
different subsystems on the machine, there
needs to be a sort of standardized
mechanism to access the diagnostic
subfunctions. This could potentially be a
problem if the suppliers of the subsystems
do not provide information regarding the
subfunctions in a standardized way.

Best Case Scenario

The two use cases described illustrate real
challenges that are faced by machine
manufacturers today. This is especially true
as the complexity of these machines
increases. One commonality between these
two scenarios is the machine manufacturer’s
goal to be able to combine all diagnostic
functions into a single diagnostic tool.

Machine	
Manufacturer	

Engine	
Diagnostic	 Tool

Engine	 Diagnostics,	
Supplier	 A

Engine	 Diagnostics,	
Supplier	 B

Engine	 Diagnostics,	
Supplier	 C

Machine	
Manufacturer	
Diagnostic	 Tool

Engine	
Diagnostics,	
Supplier	 A

Steering	 Column	
Diagnostics,	
Supplier	 C

Joystick
Diagnostics,	
Supplier	 B

MMC 2013 CAN in Automation

05-14

This tool should be able to handle diagnostic
subfunctions related to a single subsystem
regardless of the supplier, as well as the
diagnostic subfunctions of the different
subsystems present in the machine. The
key to achieving such goal is the use of
standardized communication data formats
and interfaces. These include D-PDU API,
ODX, and, OTX.

The Diagnostic Protocol Data Unit
application programing interface (D-PDU
API) is specified in the standard ISO 22900
and it is a modular vehicle communication
interface (MVCI) protocol module. This
standard describes a generic software
interface which provides a “plug-and-play”
functionality for different communication
protocols. The interface connects the
diagnostic information gathered through
these different protocols to a standard D-
server, the MCD-3 D server. This server
then uses information regarding the data
descriptions found in the ODX files and
provides interpreted, symbolic information to
the diagnostic application. The purpose of
this interface, the D-PDU API, is to ensure
that diagnostic and reprogramming
applications from any vehicle or subsystem
manufacturer can operate on a common
software interface [3].

As mentioned above, ODX files contain
information regarding the interpretation of
diagnostic data pertaining to the different
ECU’s. Developed by the Association for
Standardization of Automation and
Measuring Systems, the Open Diagnostic
Data Exchange (ODX) specification is used
to describe and exchange vehicle and ECU
diagnostic information such as diagnostic
trouble codes, identification data, input
/output parameters, and communication
parameters. ODX is a machine-readable
data format based on Extensible Mark-up
Language (XML), and is independent of
specific vehicle diagnostic protocols such as
KWP 2000, UDS, or SAE J1939. ODX is
designed to describe the following: protocol
specifications for diagnostic communication

of ECUs, communication parameters for
different protocols, data link layers and ECU
software, ECU programming data (Flash),
related vehicle interface descriptions
(information about connectors and pinout),
functional description of diagnostic
capabilities of a network of ECUs, and ECU
configuration data (variant coding) [1-2].
This data format is designed to provide a
standard way to describe and communicate
diagnostic data independently of
manufacturer, testing hardware, and
protocol software, making it ideal for
communicating diagnostic functions in an
agricultural machine which contain multiple
subsystems.

In the best case scenario, OTX files are
used as the final step, connecting the raw
data to the diagnostic application. The Open
Test Sequence Exchange (OTX) format,
which is described in the ISO 13209
standard, is an XML based exchange format
for diagnostic test sequences. The OTX
format is used to describe in a formal way
the diagnostic sequences which can be
executed as part of a diagnostic session.
The goal of OTX is to provide a standard
way for manufacturers to describe and
exchange these test sequences. The
structure of these sequences is described in
schemas that make it easy to follow,
understand, and implement [4].

The use of these standards together forms a
modular structure and mechanism to
communicate diagnostic information from
the lowest level all the way up to the
diagnostic tool. This structure, illustrated in
Figure 3, allows for the ease of integration of
diagnostic information from different
subsystems and different manufacturers.
This structure forms the basis of the solution
to the use cases described above.

The methodology involved is as follows.
Information requested by the diagnostic tool
is processed by the OTX layer where it is
matched to a specific diagnostic sequence.
This test sequence then passes through the
MCD-3 D server where the appropriate

MMC 2013 CAN in Automation

05-15

information related to the data required is
obtained from the ODX file.

Figure 3: Structure for communication of
diagnostic information using standards

Next, the transformed request passes down
into the D-PDU API layer where, with the
descriptions provided by the ODX file, the
request is formatted such that it
communicates to the correct ECU on the
bus through the appropriate protocol.
Similarly, when there is a response from the
ECU,	 the information is passed up through
the protocol stack and is collected in the D-
PDU API. From here it goes up through the
MCD-3 D server where the data is matched
to their corresponding descriptions pulled
from the ODX file. This information is then
sent up to the diagnostic tool.

Applying this methodology to the use cases
described above yields very similar models.
In the first use case, the machine
manufacturer wants to integrate the
diagnostic functions of a specific type of
subsystem which is obtained from different
suppliers into one diagnostic tool. The
manufacturer wants to use this tool to be
able to handle the diagnostics of that

subsystem regardless of which supplier it
comes from. The solution for this use case
is exemplified with the tractor engine as the
subsystem, and is illustrated in Figure 4. In
this model, the suppliers of the different
engines used by the manufacturer
(Suppliers A, B, and C) provide the
corresponding OTX and ODX files for their
engine ECUs. In these files, the diagnostic
data and test sequences are described in a
standard, machine readable format. The
engine ECU ODX and OTX files are placed
in libraries as part of the overall diagnostic
software architecture of the machine
manufacturer’s diagnostic system. These
files are then retrieved from the libraries
when needed depending on which engine is
being used. This way the manufacturer can
have a single software architecture that can
handle multiple variations of the same
subsystem.

Figure 4: Schematic of best case
scenario solution for use case 1

The solution for use case 2 is similar to that
of use case 1. In the second use case, the
machine manufacturer wants to integrate
the diagnostic subfunctions that correspond
to the different subsystems used in the
machine into a single machine diagnostic
tool. For example, the machine might
include an engine, a joystick, and a steering
column from different suppliers, all equipped

Machine	 Manufacturer	
Diagnostic	 Tool

OTX

ODX

MCD-‐3	 D
KW

P	
20

00

U
D
S

J1
93

9

.	 .
	 .

ECU ECU

ECU

D-‐PDU	 API

VCI

Engine	
ECU	 C

Machine	 Manufacturer	
Diagnostic	 Tool
Supplier	 A	 OTX

Supplier	 A	 ODX

MCD-‐3	 D
KW

P	
20

00

U
D
S

J1
93

9

.	 .
	 .

ECU ECU

D-‐PDU	 API

VCI
Engine	
ECU	 BEngine	

ECU	 A

OTX

Supplier	 A
Supplier	 B
Supplier	 C

Supplier	 A
Supplier	 B
Supplier	 C

ODX

MMC 2013 CAN in Automation

05-16

with their respective ECUs. Similar to the
first use case solution, the solution to this
use case involves the suppliers of the
different subsystems providing the
corresponding ODX and OTX files. Figure 5
illustrates the architecture of this solution.

Figure 4: Schematic of best case
scenario solution for use case 2

The ODX and OTX files are again stored
into libraries that become part of the
software architecture of the diagnostic tool.
From these libraries, the ODX and OTX files
associated with each ECU are retrieved
when required. The use of these libraries in
this use case builds on the concept
described in the first solution in that these
libraries not only contain ODX and OTX files
related to different subsystems, they also
contain the ODX and OTX files for the
different variations of each subsystem. This
way, the machine manufacturer is able to
create one diagnostic tool that can be used
for the entire machine. For example, using
ODX and OTX files provided by the different
suppliers, a manufacturer of agricultural
tractors is able to create a single diagnostic
tool which can be used for all of the different
tractors he produces.

Real World Case

The solutions for the use cases described
thus far are the best case scenario
solutions. This is because they assume that
for each subsystem, a corresponding ODX
and OTX file is provided. In the ‘real world’
however, this is not always the case. It is
very common for subsystem suppliers not to
provide diagnostic information in these
standard formats. The reasons for this
depend on the supplier; several examples
are detailed as follows.

Very often subsystem suppliers do not use
these standardized formats because they do
not want the machine manufacturer to have
access to their proprietary knowledge and
technology; they want their knowledge to
stay hidden. They do this by using
proprietary communication protocol .dll’s
which are not supported by the D-PDU
application programming interface. Some
suppliers do not provide ODX and OTX files
because their diagnostic subfunctions use
specialized communication formats. For
example, the diagnostic subfunctions of the
subsystem might communicate via a serial
interface such as RS232 instead of CAN.
Lastly, some suppliers fail to use standards
such as ODX and OTX simply because they
do not have enough time during the
development process or because they have
been using a specific way of describing data
and they do not want to change the way
things have always been done.

Regardless of the reason, when suppliers
do not provide ODX and OTX files, the task
of integrating the subsystems’ diagnostics
into a machine diagnostic tool becomes
more difficult, although still possible. The
solution in these cases involves constructing
ODX files from the data descriptions
provided by the subsystem supplier, and by
making ‘wrappers’ or specialized interfaces
which allow for proprietary or non-standard
communication formats to interface with a
standard protocol such as UDS. Hardcoded
within these wrappers is information

Machine	 Manufacturer	
Diagnostic	 Tool

ODX	 file	 from	 library

MCD-‐3	 D

KW
P	

20
00

U
DS

J1
93

9

.	 .
	 .

D-‐PDU	 API

VCI

Joystick	
ECU

OTX

Engine
Joystick

Steering	 Col.
etc…

Steering	
Column	
ECU

Engine
ECU

ODX

Engine
Joystick

Steering	 Col.
etc…

OTX	 file	 from	 library

Other	
ECUs…

MMC 2013 CAN in Automation

05-17

regarding diagnostic test routines which can
be used with the built-in UDS function
routine controls.

To explore this methodology, the solutions
to both use cases are again examined. Use
case 1 is modified in this scenario to
encompass two engine ECUs (from
suppliers B and C) which communicate
using proprietary protocol .dll’s. The engine
ECU from supplier A in this scenario
communicates through a serial interface
such as RS232. For the sake of exploring a
real world solution, none of the engine
suppliers provide ODX or OTX files. The
solution to this modified use case is
illustrated in Figure 5.

Figure 5: Schematic of real world
solution for use case 1

The architecture of the solution for use case
1 includes ODX files which are created by
the machine manufacturer from the
description data of the ECUs provided by
suppliers A, B, and C. Wrappers are also
created for each proprietary protocol .dll, as
well as for the RS232 interface, which will
allow for these non-standard formats to
interface with a standard protocol – i.e.
UDS.

Use case 2 is also modified to demonstrate
how the solution architecture must be
changed in the case that the suppliers of
different subsystems do not provide ODX
and OTX files. This solution is illustrated in
Figure 6.

Figure 6: Schematic of real world
solution for use case 2

In the modified use case 2, the machine
manufacturer’s diagnostic tool has to be
able to integrate subfunctions from different
subsystems provided by the same or
different suppliers without having been
provided with ODX or OTX files. Some of
the ECUs might use proprietary protocol
.dll’s, others might use other forms of
communication such as RS232. The
solution for their integration is based on the
same principals as in the solution for use
case 1. ODX files are constructed from the
information provided for each ECU and are
stored in an ODX library. The MCD-3 D
server then retrieves from this library the
appropriate ODX file as required.
Furthermore, wrappers which include
hardcoded information regarding diagnostic
test routines are created to interface
proprietary protocol .dll’s and other
communication formats with the UDS
standard protocol.

UDS

D-‐PDU	 API

Wrapper

RS232

Machine	 Manufacturer	
Diagnostic	 Tool

MCD-‐3	 D
Engine	 A	 ODX

Engine	 B	 ODX

Engine	 C	 ODX

Engine	 A	 ODX

J1
93

9

KW
P	
20

00

Prop.
.dll B	 	

WrapperCAN	 Interface

Engine	
ECU	 B

Engine	
ECU	 C

Engine	
ECU	 A

Wrapper
Prop.
.dll C	 	

Constructed
ODX	 files

UDS

D-‐PDU	 API

Wrapper

RS232

Machine	 Manufacturer	
Diagnostic	 Tool

MCD-‐3	 D

Engine	 ODX

Steering	 Col.	 ODX

Joystick	 ODX

Required	 ODX	 file

J1
93

9

KW
P	
20

00

Prop.
.dll-‐1	 	 Wrappers

CAN	 Interface

Wrapper
Prop.
.dll-‐n

Joystick	
ECU

Steering	
Column	
ECU

Engine
ECU

Other	
ECUs…

Constructed
ODX files

.	 .	 .

RS232RSxxx,	
K/L	 line

Other	
ECUs…

other	 subsystems

MMC 2013 CAN in Automation

05-18

Conclusion

The complexity of agricultural machines has
been and continues to increase allowing
them to accomplish more tasks in a more
efficient manner. Unfortunately, as the
machine complexity increases, so does the
complexity of the electronic control functions
within the machine. This poses an ever
growing challenge for service technicians to
provide support for the machine throughout
its lifecycle. One way to facilitate this task is
for the machine manufacturer to create a
diagnostic tool which is capable of carrying
out all of the diagnostic subfunctions related
to the different subsystems on the machine.
This way the service technician can use one
tool to diagnose any problem on the
machine rather than having to use a variety
of specialized tools for the many different
types and/or suppliers of subsystems.

To this end, two different use cases were
described which exemplify common
integration problems that machine
manufacturers are faced with. The solutions
to these use cases demonstrate the
underlying software architecture which
allows for the integration of the diagnostic
functions of all subsystems into a single
diagnostic application. These solutions
have been divided into two situations: the
best case scenario, and the less favorable,
real world scenario.

In the best case scenario, the suppliers of
the subsystems provide the machine
manufacturer information describing the
diagnostic information and routines
associated with their ECUs in formal,
standardized ways – ODX and OTX. The
use of these standards along with
standardized communication interfaces
allows for a “plug-and-play” architecture built
for ease of integrating ECUs. Unfortunately,
in the real world, the circumstance is not
always the best case scenario. It is
common for subsystem suppliers to fail to
provide ODX and OTX files. Reasons for
this include, among others, the supplier

wanting to hide proprietary information, the
subsystem diagnostic functions of the
supplied ECUs use non-standard forms of
communication, or the supplier does not
have enough time/incentive to conform to
these standards. In these situations,
standardize communication interfaces are
still used as part of the solution. ODX files
and wrappers are created using the
information provided by the suppliers in
order to communicate via the standard
communication interfaces.

These solutions illustrate that the real key to
integrating different subfunctions into one
diagnostic tool is to use standardized
communication interfaces and methods of
describing diagnostic information. Using
standards allows for a modular architecture
which is capable of being adapted to
different situations. By having a modular
schema, the machine manufacturer is able
to incorporate subsystems from any supplier
into one diagnostic application without
having to completely rework his solution
each time a new ECU is added. Not only is
this system is much easier for the
manufacturer to work with, it is also robust
and future-proof.

MMC 2013 CAN in Automation

05-19

Juan Aguilar
Sontheim Industrial Electronic, Inc.
One West Court Square, Suite 750, Decatur,
Georgia, GA 30030, USA
+1 (678) 896-5446
+1 (770) 934-3384
juan.aguilar@s-i-e.de
http://www.sontheim-industrie-
elektronik.de/en/

Gerd Bottenbruch
Sontheim Industrie Elektronik, GmbH
Georg-Krug-Straße 2
D-87437 Kempten, DE
+49-831-575 900 50
+49-831-575 900 72
E-mail: gerd.bottenbruch@s-i-e.de
Website: www.s-i-e.de

References
[1] http://www.asam.net/nc/de/home/standa

rds/standard-
detail.html?tx_rbwbmasamstandards_pi
1%5BshowUid%5D=523&start=

[2] http://automotiveiq.wordpress.com/2011/
06/03/automotive-diagnostic-systems-
from-obd-to-open-diagnostics-exchange-
format-odx/

[3] ISO 22900-2
[4] http://www.otxcentral.com/about-otx/

