
MMC 2013 CAN in Automation

04-14

Controlled separation between standard
& safety software functions in ECUs

Kai Niestroj (Sensor-Technik Wiedemann GmbH)

In addition to standard functionalities to control machinery, ECUs have also to deal
with an increasing number of functional safety requirements. To prevent potential
hazard to human and machine, development according to EN13849 [4] and EN61508
[5] is required.
Rising complexity of software applications increases the development efforts. It has
to be ensured that safety critical functionalities are not adversely affected by standard
functionalities, which are considered as non-safety related.
The EN61508-3 [6] describes technical measures to prevent those negative side-
effects of software and reduces the effort for certification of non-safety software
modules.

Why do we have to use harmonised
standards?

The machinery directive 2006/42/EC [1]
introduces identical requirements for
safety of machinery in every country within
the European Economic Area (EEA). This
directive will be converted into national
laws, i.e. the Federal Republic of Germany
converts the machinery directive into the
Product Safety Act (ProdSG) [2]. In §4 of
the ProdSG [2] is a reference to
harmonised standards, which are
published in the official Journal of the
European Communities. There, for
instance you will find the standards of
EN13849 [4] respectively EN62061 [3].
The EN61508 [5] is not listed as a
harmonized standard. In fact the EN61508
[5] is a generic standard. EN62061 [3] for
example is derived from EN61508 [5]. In
EN13849 [4] you are able to find
references to the generic standard [5].
All mentioned standards above have the
common aim, to reduce risks and hazards
to humans and machines. To fulfil ProdSG
[2]Fehler! Verweisquelle konnte nicht
gefunden werden., harmonised
standards like EN62061 [3] or EN13849 [4]
will be relevant. These standards are
describing requirements on how to design
and implement safety ECUs for mobile
machinery.

For system designers it is important to
observe the ProdSG [2]. If safety
requirements of one harmonized standard
are achieved, Prod SG [2] is fulfilled.
That is very important, because in mobile
machinery you have to control potential
hazards to human and machinery, too.

Used Terminology

After a successful risk assessment, you
obtain, depending on the applied standard,
either a performance level (PL) according
to EN13849 [4] or a Safety Integrity Level
(SIL) according to EN62061 [3].
For comparison between different risk
measures, refer to Figure 1. Generally
speaking, the higher the number or letter,
the more must be contributed to risk
reduction.
When using the terminology safe,
requirements of the safety level for SIL 2
and/or PL d. are observed.

Figure 1: Compare of risk grades

MMC 2013 CAN in Automation

04-15

The external certification agency is a
further assurance to meet the high
demands.
When using the terminology standard,
internal corporate guidelines are applied
for developing software components.
Standard functions are functions that fulfill
functional requirements of the overall
system. An error of a standard
functionality could lead to a machine
downtime.
If executed standard code does not affect
the execution of safety relevant code, it
can be identified as non-interfering.

Use-case of non-interference software

If you want to develop a highly flexible,
modular, and complex safety control
system, it is already evident in the
planning phase, to offer solutions that
provide non-interfering standard code in
communication drivers like CANopen, and
J1939, as well as in libraries for Mainboard
(MB), and Expansion Board (EB).
A further difficulty is that concrete
applications of ECUs are not known. That
is the reason, why we have to find a
general solution for components with non-
interfering software on a single CPU
system.

Techniques for achieving non-
interference between software
components on a single CPU

The standard EN61508-3 [6] describes
solutions to control the non-interference
between standard and safety functions.
The requirement 7.4.2.9 of EN61508-3 [6]
states, that software components certified
for different SIL ratings, can be executed
on a single CPU:
The requirement of EN61508-3 provided
that: ‘Where the software is to implement
safety functions of different safety integrity
levels,
(S) then all of the software shall be treated
as belonging to the highest safety integrity
level, unless adequate independence
between the safety functions of the
different safety integrity levels can be
shown in the design.

It shall be demonstrated either
(T) that independence is achieved by both
in the spatial and temporal domains, or
(W) that any violation of independence is
controlled. The justification for
independence shall be documented.’

(S) The entire module functions are
certified according to EN61508-3 [6]
SIL2, this means an extremely high
burden of certification as well as a
very large effort in software
maintenance for example on changes
in non-interference software
components.

(T) Independence through spatial and
temporal separation. With this
method, the absence of interference
can be ensured. In that case
requirements for non-interference of
software components can be fulfilled.

(W) Control, if breaching independence

(non-interference), we do not know
for which applications our ECUs are
used for. Based on this fact, we
cannot fulfill this requirement.

Integrating non-interference code as it is
described in (T), leads to reduced
certification and maintenance work and
reduced expense of application
development.
Through the combined separation
temporal as well as spatial, a controlled
flow of data between functions which have
different safety significance, can take
place.

Technical concept

A 32bit CPU (TriCore) was already been
defined as an embedded platform. We
have a single CPU architecture, so the
safety-related and standard functions
require the same resources such as CPU,
ROM, and RAM. Merely a Memory
Protection Unit (MPU) is provided by
Infineon. A complete temporal and spatial
separation is not given by the TriCore and
so a own designed mechanism is needed.

MMC 2013 CAN in Automation

04-16

In addition, the design needs to meet the
safety requirements, according to the
relevant standards.
First question is how to get a temporal
separation? It is not given only by using a
TriCore processor. Therefore, we need to
consider the system architecture of the
ECU. We have provided a watchdog
controller at our HW design of the ECU.
Additional to the watchdog controller, a
task system is needed to prioritize the
available tasks.
Second question is how to get a spatial
separation? The spatial separation can be
ensured through a proprietary memory
protection mechanism.
Figure 2 shows the software system
architecture, freely programmable in C.
The green block, denoted as Safety Layer
API is presenting the memory protection
layer.
Based on the C application level the safe
and standard functions will conducted
through the Safety Layer (SL) API. After
correct execution of the code, all functions
are passed to the Hardware Abstraction
Layer (HAL). Each HAL function has its
own SL function.
Before executing HAL functions, the
additional safety checks and MPU
configurations are executed in the SL-API.
The illustrated STW task system has the
same features like an RTOS task system,
which is used by the application code. The
task system is elementary needed for the
temporal separation of safe and standard
code.

Figure 2: System architecture

The linkage of the STW task system with
the safety layer is shown in Figure 3.

Global or static functions and data can be
stored in three different memory areas with
different security levels and each level has
different memory access rights.

ü System level
ü Safety level
ü Standard level

The system level is only reserved for
internal BIOS functionalities and has
access rights to almost all memory areas
and CPU registers. All Interrupts will be
executed in the system safety level.
System functions have Read/Write access
to system, safety and standard data.
The safety level has access to protected
global data and also access to application
data that affects safety relevant
functionality.
Safety relevant data must be protected
against access from the standard
components of the application. Code that
will be executed in this safety level, usually
implements safety relevant functionality
(for example handling of ECU outputs) and
should undergo test and documentation
procedure of the required safety
standards. In this level you will have read
access to all memory areas and write
access to protected and standard data.
System data cannot be accessed from this
level.
The standard level has access to
application data that is not used for safety
relevant functionalities. Code executed in
this standard level has no write access to
protected and system data. Therefore it
can be changed without affecting safety
relevant functionality. Standard functions
have read access to all memory areas, but
write access only to standard data level.
The task system has two types of
mechanism, safe tasks and standard
tasks.
Managing different code classes and
granting write permissions are its key
properties. A task system also
administrates available memory.

MMC 2013 CAN in Automation

04-17

Task stack and static data of safety
relevant tasks are write-protected; this is
the memory protection unit (MPU).

Figure 3: Interaction of memory
protection and STW task system

Hardware has to be initialized the right
way to meet safety and standard
requirements. For example an output
defined as safe, shall be only accessed by
safe functions. Following properties are
known by the safety layer:

ü SL-API is an additional software layer,

which is simply placed on top of the
HAL.

ü SL-API is directly coupled to the STW
task system and uses the MPU of the
TriCore CPU to refuse writing on global
data, if the executed function does not
have the required writing permission
for the task.

ü SL-API allows the application to

interact between safe and non-
interfering standard functionalities.

SL-API is essential to implement RTS
Codesys Safety SIL2 on TriCore platforms
with the existing single CPU system.

Codesys V3

Codesys is a software platform
especially designed to fulfill different
requirements of modern industrial
automation projects. The IEC 61131-3
development system is the heart of
Codesys.
It offers integrated, user-friendly solutions
to support development tasks. In Codesys
several PLC programming languages are

available. In according to the relevant
standards EN62061 [3] and EN13849 [4],
the languages can be divided into 2
categories:

• LVL - Low Variability Language

o Function Block Diagram (FBD)
o Ladder diagram (LD)

• FVL - Full Variability Language

o Instruction List (IL)
o Sequential Function Chart (SCF)
o Structured Text (ST)

Codesys Safety SIL2 is based on
Codesys V3.
The system architecture of Codesys
runtime system is shown in Figure 4.
Compared to C system architecture, the
SW - Base System is now the lowest
software layer in Codesys RTS. On SW –
Base System the STW-Shell is placed.
The Codesys Safety SIL2 Core is
embedded into the STW-Shell.
The STW-Shell provides the interface
between Codesys Safety SIL2 Core, SW -
Base System, and the IEC - Application.
Safety and functional requirements of SW
- Base System, Codesys Safety SIL2
Core, and IEC - Application must be
implemented in the STW-Shell. It is not
allowed to implement Codesys RTS
specific requirements into the SW - Base
System.

Figure 4: System architecture of

Codesys RTS

Currently the entire IEC - Application has
to be developed according to the
harmonized standards.

MMC 2013 CAN in Automation

04-18

What are the benefits with Codesys
Safety SIL2?

In accordance with TC5 [7], chapter 4.1,
safety-related applications can be
subdivided into three parts:

• Basic level (according to [3]Fehler!

Verweisquelle konnte nicht
gefunden werden.)

• Extended level (according to [3])
• System level (according to [5])

The programming languages for
application development are limited.
If implementing an IEC – Application in
basic or extended level, TC5 [7] allows the
programming languages FBD and LD.

FBD and LD are languages with limited
scope (LVL), according to EN62061 [3]
chapter 3.2.49 are only the graphic
languages of IEC61131-3 [8] qualified.
However, if suitable coding guidelines
applied, almost any programming
language can be classified as LVL and
therefore be used for basic or extended
level. Coding guidelines used for LVL
classification have to be approved by
safety assessment. Are the coding
guidelines approved, certification can take
place in accordance with EN62061 [3],
without regarding EN61508 [5].
In basic and extended level you have to
consider the linking restrictions, and as an
additional requirement only pre-certified
modules are allowed.
The extended level is usually used for the
preparation of pre-certified function
libraries. The advantage of both levels are,
that tests according to EN62061 [3] are
required.
The system level allows the use of FVL
and especially ST. But due to EN 62061
section 6.11.3.1.1 there is a reference to
EN61508 [5] and must therefore be certify
according to EN61508 [5].

Figure 5: Program structure

In Figure 5 the program structure of a
safety IEC - Application is shown.
As mentioned, complex libraries can be
pre-certified by using the system level, by
using the extended level, and in according
to the used harmonized standards. After
their certification, they can be easily
merged and categorized as basic level.
This means that only integration tests are
required.
Another advantage of pre-certified libraries
are, they can be used for other safety
related IEC – Applications. Thereby the
expenses for other application projects can
be reduced.
Figure 6 shows the example of a graphical
data flow for developing an IEC -
Application. The data flow shows
comprehensible the separation between
safe and standard functions. Reviews
became much more user-friendly.

Figure 6: Example data flow

Codesys offers in addition to the compiler
checks, a tool to check the source code
based on predefined rules. To obtain
information on potential problems, errors
can be detected and already removed
before the field tests will begin.

MMC 2013 CAN in Automation

04-19

Summary:

By the developed mechanisms between
the safety layer and the STW task system,
we can ensure that the temporal and
spatial separation of software functions
can be guaranteed.
Therefore we have met the requirement
7.4.2.9 from the standard [6], to provide
the mechanism of non-interference
software.
In C - Applications this mechanism can be
used to design applications in compliance
with the safety requirements.
This allows the system designer during the
entire machinery lifespan to focus on safe
software modules. Standard components
will not have any influence to the safe
components (non-interference).
By the memory protection Codesys Safety
SIL2 could be implemented on one single
CPU.
The entire IEC code must be designed
after the safety aspect of the relevant
harmonized standards.
However, a simplified certification can be
reached, if pre-certified libraries are used.
At basic level designed IEC – Applications
only integration tests for validation are
required. The provided Codesys analysis
tool ensures that applied predefined rules
are checked.

Kai Daniel Niestroj
Sensor-Technik Wiedemann GmbH
Am Bärenwald 6
D-87600 Kaufbeuren
Phone: +49 8341-95 05-0
Fax: +49 8341-95 05-55
E-Mail: info@sensor-technik.de
Website: http://www.sensor-technik.de/

References
[1] Machinery directive 2006/42/EC
[2] Produktsicherheitsgesetz ProdSG

http://www.gesetze-im-
internet.de/englisch_prodsg/englisch_prod
sg.html#p0023 [Nov.2011]

[3] EN62061 [Okt. 2005]
[4] EN ISO 13849 Safety of machinery –

Safety-related parts of control systems
[Jul. 2007]

[5] EN61508 Functional safety of electrical/
electronic/programmable electronic safety-
related systems [Apr. 2010]

[6] EN61508-3 Functional safety of electrical/
electronic/programmable electronic safety-
related systems Software requirements
[Apr. 2010]

[7] PLCopen - Technical Committee 5 Safety
Software - Technical Specification Part1 -
Concepts and Function Blocks [Jan. 31,
2006]

[8] IEC61131-3 Programmable controllers –
Part 3: Programming languages [Dec.
2002]

