
MMC 2013 CAN in Automation

06-7

Challenges of CANopen Node ID assignment,
avoiding duplicates

Olaf Pfeiffer & Christian Keydel (Embedded Systems Academy)

The Node ID used by CANopen device is a very essential setting. Each node in a
CANopen system requires one unique Node ID number by which it can be identified. If
it is duplicated, errors will occur and potentially one or multiple nodes will shut down
due to collisions on the network. This paper summarizes the typical options available
for configuration of the Node ID and introduces the latest enhancement to LSS (Layer
Setting Services), allowing for a fast dynamic assignment of Node IDs through the
network.

When designing a CAN-based network,
one condition has to be avoided at all cost:
Devices having their CAN controllers going
into BUS OFF state. This most severe of
CAN errors logically disconnects the
device from the bus and prevents all
further communication with it. Recovery
from this state requires at least a reset of
the CAN controller but often a reset of the
complete device. Sometimes, it requires
power-cycling the whole network.
There are two major issues that can cause
a CANopen device to go into BUS OFF
state. The first is one or multiple devices
operating at a different CAN speed, or bit
rate, than the rest of the network. This
invariably will cause some or all nodes that
are trying to send messages eventually
turning BUS OFF.
The second area of concern is on the
logical, or protocol level. Each node
connected to a CANopen network must
have a unique Node ID between 1 and
127. If a CANopen Node ID exists multiple
times in a network, in addition to the
inability to distinguish between individual
nodes, also physically different devices
may try to send CAN messages at the
same time that have the same identifier
but different data. This thwarts the
arbitration mechanism on a CAN bus, also
causing devices to switch into BUS OFF
state, and is therefore a big no-no.
This paper discusses the available options
to address the second issue of Node ID

assignment, which has to happen at some
point during the development or integration
of a CANopen network.
Hard Coded
If a CANopen network is embedded in a
machine and all nodes run different
software, then this software can use a
hard coded Node ID. With power-up and
initialization all nodes know their Node ID
immediately and can start communicating.
The benefit of this method is that the entire
issue of assigning Node IDs is kept at the
development level. The engineers
originally planning the network make this
assignment. Persons involved with
installation or maintenance do not need to
worry about it.

Figure 1: Network with all different
devices
On the other hand this also means that the
network is less flexible. If at some point a
network device needs to be duplicated –
the same device twice – then this does not
work without a software change and the
software would need to be different for
both devices.

MMC 2013 CAN in Automation

06-8

If several nodes in a system are based on
the same hardware/software, then an
additional way to set the Node ID is
required as otherwise these nodes would
automatically have the same Node ID.

Dials or Switches

Figure 2: Multiple same nodes in a
network with dials

Some CANopen modules and devices
have DIP switches or dials to select a
Node ID. This means that the person
installing or replacing a device in a
network must have the knowledge about
these settings and how to make them
before inserting or adding a module to the
network. Although this is a very flexible
solution, dials and switches are becoming
less popular. Every configuration switch
added increases the risk that a technician
does something wrong.

Coded into the cabling and connectors

If the connector for the CAN cabling has
extra pins available, those can be
equipped with different bridges / shorts
representing a binary number. The
software in the connected module can
then read this number and use it to set its
own Node ID.

Figure 3: Bridges in the connector

This method moves the intelligence about
the Node IDs from the modules to the
wiring of the system. As with the hard
coded software solution, the Node ID
assignment happens at the engineering
level. If the cables and connectors all
come pre-configured, the installation or
maintenance technicians do not need to
worry about it.
This solution is typically only used in
networks with a limited number of nodes
as otherwise the connectors become too
big or too expensive.

Stored in non-volatile memory such as
EEPROM

Most embedded devices today have some
non-volatile memory in which configuration
data can be stored. The Node ID setting
can be made part of that configuration
data. However, this in itself is not a
solution to the main problem: When does
who decide which node number is
assigned to which module? Are the Node
IDs pre-set individually during the
manufacturing process? Or does the
person installing a system need to connect
some configuration tool and set them from
there?

Dynamically at run-time

Recent improvements in the CANopen
Layer Setting Services (LSS) have made
the Node ID assignment through the
network more efficient and faster. These
methods allow an LSS Master to detect
unconfigured nodes and assign them a
Node ID dynamically. In general, this
method also supports plug-and-play at
runtime. An unconfigured node can be
added at any time, will be detected by the
LSS Master and assigned a Node ID.
Early implementations were slow and
sometimes required up to a minute for the
reliable detection of an unknown,
unconfigured node and the assignment of
a Node ID to it. With the latest
enhancements, called LSS Fastscan with
feedback message, which improves on the
already enhanced LSS Fastscan [1], this
time can now be reduced to less than 100
milliseconds.

MMC 2013 CAN in Automation

06-9

In order for this method to work, the
participating nodes must implement all
Object Dictionary entries of the
Identification object 1018h. These are four
values of 32bits each: the vendor ID –
which is assigned by CAN in Automation,
a product code, a revision number and a
serial number. Together, these 128bits
make up the LSS ID and are used to
specifically identify a particular device on
the network. Therefore this number must
be unique to each node.

Principles of the LSS Fastscan cycle

LSS Fastscan only requires two CAN
messages: the LSS Master message (from
master to devices) and the LSS Identify
message (response from devices to
master). The LSS Identify is the same for
all devices (same contents), so if multiple
devices send it, they do not cause a
collision on the network, it can be
transmitted from multiple devices at the
same time.
The basic mode of operation is a bit-by-bit
scan of the 128bit LSS ID. The LSS
Master first asks “is there anybody non-
configured / in LSS mode?” If one or
multiple LSS Identify responses come, this
is true. Next the master asks “is there
anybody with the highest bit of the LSS ID
cleared?” If the LSS Identify response
comes, this is true. The master can
continue with the next request for the next
bit: “is there anybody with the highest
TWO bits of the LSS ID cleared?” If no
LSS Identify response comes within a
defined timeout, the Master assumes a bit
to be set, otherwise to be cleared.
It is important that LSS devices that no
longer “have a match” of their own LSS ID
with the bit pattern requested by the LSS
Master messages remain silent. Only LSS
devices that have all requested bits
matching may still participate in sending
LSS Identify responses.
It takes about 128 requests to determine
the entire LSS ID, there might be a four
extra requests for confirmation of a
complete 32 bit value. With a timeout of
10ms, it takes about 1.25 seconds to
detect all 128bits of a LSS ID.

Parameters of the LSS Fastscan
Identify Master message

As defined by [1] and [2], the eight bytes
(0 to 7) of the LSS Master Message
(0x7E5) are used as follows with the
Fastscan service:
Byte 0, command byte:
Set to 81h, identifies this as a Fastscan
Identify message.
Bytes 1-4, IDNumber:
These are 32bits each that are checked
versus the Vendor ID, product code,
revision number or serial number.
Byte 5, BitChecked:
Defines how many of the bits in IDNumber
are currently checked. This is a value in
the range of 0 to 31. 31 means that only bit
31 is checked, 30 means that bits 31 and
30 are checked, 29 means that bits 31, 30
and 29 are checked and so on. 0 means
that all 32bits are checked.
A value of 80h is an exception and
indicates the start of a new scan cycle, all
nodes supporting Fastscan reset their
internal state machines and respond.
Byte 6, LSSSub:
Defines which part of the 128bit LSS ID is
currently checked in the 32bit IDNumber.
This is a value from 0 to 3 representing the
Vendor ID, product code, revision number
or serial number.
Byte 7, LSSNext:
Defines which part of the 128bit LSS ID
will be checked towards the 32bit
IDNumber in the next cycle. This is a value
from 0 to 3 standing for the Vendor ID,
product code, revision number or serial
number.

Introducing feedback messages

Using these parameters, an LSS Master
can determine the LSS ID of an individual
node by checking it bit-by-bit as shown in
Table 1. However, these parameters can
also be used to verify known bits of an
LSS ID. So if the LSS Master knows the
next group of bits, it can confirm them
using just one message.
Instead of only using the single identify
message, LSS devices supporting
feedback also use feedback messages to

MMC 2013 CAN in Automation

06-10

inform the LSS master about the next,
upcoming bits of their LSS ID. These are
coded into the CAN identifier, so that
feedback messages from multiple nodes
do not cause a collision on the network. In
the example of table [2] 29bit ID messages
are used with the lowest 16bit representing
the next 16bits of the CAN ID. An alternate
method uses 16 different 11bit messages
as feedback supplying the LSS master
with the next 4bits of a slave’s LSS ID.
The version with 29bit messages should
only be used, if the number of nodes using
this method is limited as it causes a higher
busload then the single, shared LSS
Identify message. Today the 29bit
feedback version is in use in networks with
up to 16 nodes.

Usage Considerations

Although the dynamic Node ID assignment
with LSS Fastscan and feedback might
now sound like a perfect solution for many
applications, there is still one thing to
consider: this method does not provide
any clues about the physical location of a
device in the network. As an example
consider a machine using two identical
CANopen sensors for the right side and
the left side of a machine. With LSS each
sensor is assigned its own, unique Node
ID. However, from this information alone
we do not know which one is left or right?
In many applications there are
mechanisms that allow detecting the
physical location; maybe because the two

devices have a different configuration
(which can be read via CANopen) or by
the way the machine is built, for example
the right sensor always becoming active
before the left.
If such additional information is not
available, then some manual configuration
is still required. In order to keep the
process manageable for an installation or
maintenance crew, the recommendation is
to only have them add/install one node at
the time. The system detects it and can
inform the crew “new device detected from
manufacturer X, serial number Y” which
can then be assigned to be the “left” or
“right” sensor. If that information is
persistently stored in the Master/Manager,
then from that time forward the system
knows the physical location of a device
with a given serial number.

Conclusion

All Node ID assignment methods
mentioned above are in use today, also in
combination, wherever for a specific
application they are simply the best fit.
With the new LSS detection and
configuration method being vastly more
efficient than previous iterations, a
dynamical assignment of Node IDs at
power up of the network is becoming more
attractive for many applications for which it
was previously not considered due to the
long detection cycle times.

MMC 2013 CAN in Automation

06-11

Table 1: LSS Fastscan cycle without feedback

Msg	 ID	 Details	 Raw	 Message	

1	 0x7E5	 LSS	 Fastscan:	 Checking	 for	 new	 nodes	 51	 00	 00	 00	 00	 80	 00	 00	
2	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
3	 0x7E5	 LSS	 Fastscan:	 Vendor	 ID	 -‐	 Checking	 bits	 31	 -‐	 31	 51	 00	 00	 00	 00	 1F	 00	 00	
4	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
5	 0x7E5	 LSS	 Fastscan:	 Vendor	 ID	 -‐	 Checking	 bits	 30	 -‐	 31	 51	 00	 00	 00	 00	 1E	 00	 00	
6	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	

	 .	 .	 .	 continue	 	 	 	 	
56	 0x7E5	 LSS	 Fastscan:	 Vendor	 ID	 -‐	 Checking	 bits	 0	 -‐	 31	 51	 41	 53	 35	 01	 00	 00	 01	
57	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	

	 .	 .	 .	 continue	 	 	 	 	
115	 0x7E5	 LSS	 Fastscan:	 Product	 Code	 -‐	 Checking	 bits	 0	 -‐	 31	 51	 03	 00	 47	 04	 00	 01	 02	
116	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
	 .	 .	 .	 continue	 	 	 	 	
176	 0x7E5	 LSS	 Fastscan:	 Revision	 Nr.	 -‐	 Checking	 bits	 0	 -‐	 31	 51	 06	 00	 02	 00	 00	 02	 03	
177	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
178	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 31	 -‐	 31	 51	 00	 00	 00	 00	 1F	 03	 03	
179	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 30	 -‐	 31	 51	 00	 00	 00	 80	 1E	 03	 03	
	 .	 .	 .	 continue	 	 	 	 	
204	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
205	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 9	 -‐	 31	 51	 00	 F0	 ED	 FE	 09	 03	 03	
206	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
207	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 8	 -‐	 31	 51	 00	 F0	 ED	 FE	 08	 03	 03	
208	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
209	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 7	 -‐	 31	 51	 00	 F0	 ED	 FE	 07	 03	 03	
210	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
211	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 6	 -‐	 31	 51	 00	 F0	 ED	 FE	 06	 03	 03	
212	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
213	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 5	 -‐	 31	 51	 00	 F0	 ED	 FE	 05	 03	 03	
214	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
215	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 4	 -‐	 31	 51	 00	 F0	 ED	 FE	 04	 03	 03	
216	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
217	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 3	 -‐	 31	 51	 00	 F0	 ED	 FE	 03	 03	 03	
218	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 2	 -‐	 31	 51	 08	 F0	 ED	 FE	 02	 03	 03	
219	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 1	 -‐	 31	 51	 0C	 F0	 ED	 FE	 01	 03	 03	
220	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
221	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 0	 -‐	 31	 51	 0C	 F0	 ED	 FE	 00	 03	 04	
222	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 0	 -‐	 31	 51	 0D	 F0	 ED	 FE	 00	 03	 04	
223	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
224	 0x7E5	 Configure	 Node	 ID	 -‐	 NID:	 0x03	 11	 03	 00	 00	 00	 00	 00	 00	
225	 0x7E4	 Configure	 Node	 ID	 -‐	 Success	 11	 00	 00	 00	 00	 00	 00	 00	
226	 0x7E5	 Store	 Configuration	 17	 00	 00	 00	 00	 00	 00	 00	
227	 0x7E4	 Store	 Configuration	 -‐	 Success	 17	 00	 00	 00	 00	 00	 00	 00	
228	 0x7E5	 Switch	 Mode	 Global	 -‐	 Operation	 Mode	 04	 00	 00	 00	 00	 00	 00	 00	
229	 0x703	 Boot	 up	 of	 node	 3	 00

The trace recording above is a summary of
a LSS Fastscan execution. The columns
show the CAN message identifier seen on
the network (7E5h for LSS Master message
and 7E4h for LSS Identify response), the
message interpretation with type and

details and the raw message contents. At
message number 56, 115, 176 and 222 the
next 32bits of the LSS ID are detected, as
highlighted in the “Raw Message” column.
Based on a 20ms timeout this took about
2.78 seconds to execute (until boot up).

MMC 2013 CAN in Automation

06-12

Table 2: LSS Fastscan cycle with feedback

Msg	 ID	 Details	 Raw	 Message	

1	 0x7E5	 LSS	 Fastscan:	 Checking	 for	 new	 nodes	 51	 00	 00	 00	 00	 80	 00	 00	
2	 0x1F900135	 LSS	 Fastscan:	 Bits	 16	 -‐	 31	 are	 0x0135	 	 	
3	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
4	 0x7E5	 LSS	 Fastscan:	 Vendor	 ID	 -‐	 Checking	 bits	 16	 -‐	 31	 51	 00	 00	 35	 01	 10	 00	 00	
5	 0x1F915341	 LSS	 Fastscan:	 Bits	 0	 -‐	 15	 are	 0x5341	 	 	
6	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
7	 0x7E5	 LSS	 Fastscan:	 Vendor	 ID	 -‐	 Checking	 bits	 0	 -‐	 31	 51	 41	 53	 35	 01	 00	 00	 01	
8	 0x1F900447	 LSS	 Fastscan:	 Bits	 16	 -‐	 31	 are	 0x0447	 	 	
9	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	

10	 0x7E5	 LSS	 Fastscan:	 Product	 Code	 -‐	 Checking	 bits	 16	 -‐	 31	 51	 00	 00	 47	 04	 10	 01	 01	
11	 0x1F910003	 LSS	 Fastscan:	 Bits	 0	 -‐	 15	 are	 0x0003	 	 	
12	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
13	 0x7E5	 LSS	 Fastscan:	 Product	 Code	 -‐	 Checking	 bits	 0	 -‐	 31	 51	 03	 00	 47	 04	 00	 01	 02	
14	 0x1F900002	 LSS	 Fastscan:	 Bits	 16	 -‐	 31	 are	 0x0002	 	 	
15	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
16	 0x7E5	 LSS	 Fastscan:	 Revision	 Nr.	 -‐	 Checking	 bits	 16	 -‐	 31	 51	 00	 00	 02	 00	 10	 02	 02	
17	 0x1F910006	 LSS	 Fastscan:	 Bits	 0	 -‐	 15	 are	 0x0006	 	 	
18	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
19	 0x7E5	 LSS	 Fastscan:	 Revision	 Nr.	 -‐	 Checking	 bits	 0	 -‐	 31	 51	 06	 00	 02	 00	 00	 02	 03	
20	 0x1F90FEED	 LSS	 Fastscan:	 Bits	 16	 -‐	 31	 are	 0xFEED	 	 	
21	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
22	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 16	 -‐	 31	 51	 00	 00	 ED	 FE	 10	 03	 03	
23	 0x1F91F00D	 LSS	 Fastscan:	 Bits	 0	 -‐	 15	 are	 0xF00D	 	 	
24	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
25	 0x7E5	 LSS	 Fastscan:	 Serial	 Nr.	 -‐	 Checking	 bits	 0	 -‐	 31	 51	 0D	 F0	 ED	 FE	 00	 03	 04	
26	 0x7E4	 Identify	 Servant	 4F	 00	 00	 00	 00	 00	 00	 00	
27	 0x7E5	 Configure	 Node	 ID	 -‐	 NID:	 0x03	 11	 03	 00	 00	 00	 00	 00	 00	
28	 0x7E4	 Configure	 Node	 ID	 -‐	 Success	 11	 00	 00	 00	 00	 00	 00	 00	
29	 0x7E5	 Store	 Configuration	 17	 00	 00	 00	 00	 00	 00	 00	
30	 0x7E4	 Store	 Configuration	 -‐	 Success	 17	 00	 00	 00	 00	 00	 00	 00	
31	 0x7E5	 Switch	 Mode	 Global	 -‐	 Operation	 Mode	 04	 00	 00	 00	 00	 00	 00	 00	
32	 0x703	 Boot	 up	 of	 node	 3	 00

The trace recording above shows all
messages involved in the scan of a single
LSS device using 29bit feedback
messages. The 29bit feedback messages
reports the feedback value in bits 0 to 15.
Bit 16 is a toggle bit alternating with each

transfer. Bit 17 is reserved. Bits 18 to 28
contain the pattern 7E4h so that it
matches with the 11bit ID of the LSS
Identify message. Based on a
20 millisecond timeout this took 210ms to
execute (until boot up).

MMC 2013 CAN in Automation

06-13

Olaf Pfeiffer
Embedded Systems Academy GmbH
Bahnhofstr. 17
D-30890 Barsinghausen
Tel.: (+49) 5105 / 582 7897
opfeiffer@esacademy.com
www.esacademy.com

Christian Keydel
Embedded Systems Academy GmbH
Bahnhofstr. 17
D-30890 Barsinghausen
Tel.: (+49) 5105 / 582 7897
opfeiffer@esacademy.com
www.esacademy.com

References
[1] CiA 305-1 Work Draft version 2.2.14 from

26 January 2012, chapter 6.7.3 – LSS
Fastscan procedure

[2] icc 2008, Pfeiffer, Plug and Play: Node
detection and Node ID assignment with the
LSS Fast Scan service

