
iCC 2015 CAN in Automation

05-1

Linux	and	ISO	15765-2	with	CAN	FD

Dr. Oliver Hartkopp, Volkswagen AG

Only	two	weeks	after	disclosure	of	the	CAN	FD	main	features	at	13th	iCC	[1]	the	Linux	
CAN	community	started	to	discuss	about	a	seamless	integration	of	CAN	FD	into	the	CAN	
subsystem	of	the	Linux	operating	system.	This	paper	gives	a	comprehensive	survey	
about	 the	 integration,	 configuration	 and	 usability	 of	 CAN	FD	 in	 the	 Linux	 operating	
system	as	well	as	an	introduction	into	the	new	ISO15765-2:2015	with	CAN	FD	support.	

With the integration of the socket-based
CAN support in Linux 2.6.25 [2] in April
2008 the data structures and programming
interfaces were defined and therefore fixed
in an application binary interface (ABI).
This fixed ABI implies that Linux CAN (aka
SocketCAN) applications that were compiled
and linked statically for Linux in 2008 are
able to run on the latest Linux system with a
recent Linux 4.x kernel.
Analogue to this guaranteed binary
backward compatibility for applications the
introduction of the common CAN driver
interface in Linux 2.6.31 in September 2009
fixed the way how CAN network interfaces
are configured in terms of bitrate and other
CAN controller specific settings.

From the perspective of CAN application
programmers the formerly settled properties
of up to eight bytes of payload and a single
bitrate to be set into the CAN controller
became uncertain. With CAN FD the known
CAN bitrate configuration is doubled and the
data structures to hold CAN frame contents
are increased in size which can lead to buffer
overflows when the former CAN frame data
structure is accidently used. Preserving
the simple and established SocketCAN
programming interface under the new
conditions with CAN FD is an ambitious task
which has been accomplished by the Linux
CAN community instantaneously after 13th
iCC.

CAN	FD	data	structures

As the associated CAN interface and the
timestamp of the CAN frame are provided by
existing Linux programming interfaces the
data structure which holds the CAN frame

content is the elementary data definition for
SocketCAN. The original classic CAN frame
data structure is defined as:

struct can_frame {
 canid_t can_id;
 __u8 can_dlc;
 __u8 __pad;
 __u8 __res0;
 __u8 __res1;
 __u8 data[8]; /*aligned*/
};

The can_id contains the CAN Identifier with
additional bit values e.g. to point out a 29
bit identifier or RTR frames. The can_dlc
contains the number of used bytes in the
data[] byte array. Remark: The padding and
reserved bytes have been added recently
to be in line with the CAN FD definitions.
These extensions do not have an impact on
the application binary interface as the data[
] was always 64 bit aligned (see linux/can.h
[3] for details).

For the CAN FD frame a separate data
structure has been defined:

struct canfd_frame {
 canid_t can_id;
 __u8 len;
 __u8 flags;
 __u8 __res0;
 __u8 __res1;
 __u8 data[64]; /*aligned*/
};

The major differences are the introduced
flags element which holds CAN FD frame
specific flags like CANFD_BRS and
CANFD_ESI and the len element. The len
element shares the position with the can_
dlc element of the classic CAN frame and

iCC 2015 CAN in Automation

05-2

(still) contains the number of used bytes
in the data[] byte array. In classic CAN
applications the can_dlc value was usually
used as plain numeric length information
as there was a 1:1 mapping from the ‘data
length code’ and the data length. Using CAN
FD frames the data length code mapping is
performed on the CAN driver level which
makes the software adaption for CAN FD
pretty easy.

Processing length information to print CAN
payload data (before CAN FD support):

struct can_frame cframe;

for (i=0; i < cframe.can_dlc; i++)
 printf(„%02X „, cframe.data[i]);

Processing length information to print CAN
payload data (with CAN FD support):

struct canfd_frame cframe;

for (i=0; i < cframe.len; i++)
 printf(„%02X „, cframe.data[i]);

This example points out the main change
for application programmers when moving
their code to (additionally) support CAN FD.
Several code references how to move from
classic CAN to CAN FD can be retrieved
from the code changes [6] in the Linux can-
utils package which has been adapted when
Linux 3.6 was released in 2012. The can-utils
user space tools to send, receive, store and
replay CAN traffic can be found as source
code on GitHub [4] and as pre-compiled
package ‘can-utils’ in your preferred Ubuntu/
Debian based Linux distribution [5].

CAN	FD	network	infrastructure

Both the classic CAN frames and the CAN
FD frames are processed inside the Linux
network infrastructure in so called socket
buffers. With the introduction of CAN FD a
second type of CAN related socket buffers
was created to hold the canfd_frame data
structures.

As legacy CAN applications only can cope
with classic CAN frames a new socket option
CAN_RAW_FD_FRAMES is defined for
CAN_RAW sockets to enable the reception
and transmission of CAN FD frames.

When CAN FD is enabled for the socket e.g.
the read() system call can return with two
different length information:

 • 16 bytes for classic CAN frames
 • 72 bytes for CAN FD frames

Therefore the buffer which is assigned to be
utilized by the read() system call has to be a
of the size of a struct canfd_frame when CAN
FD is enabled. As the CAN FD controller still
might receive classic CAN frames in this FD
enabled mode the struct canfd_frame might
be filled with the shorter struct can_frame
content. Due to the identical layout - e.g.
with the can_dlc and len element – a classic
CAN frame can be stored inside the CAN
FD frame structure. To distinguish the frame
type only the length information has to be
evaluated with is returned by the read()
system call:

 • 16 bytes Ò classic CAN frame
 • 72 bytes Ò CAN FD frame

For convenience reasons these values
are defined as the ‘maximum transfer unit’
(MTU) in the linux/can.h [3] include file as
CAN(FD)_MTU values:

#define CAN_MTU (sizeof(struct can_frame))
#define CANFD_MTU (sizeof(struct canfd_frame))

CAN	FD	driver	infrastructure

With Linux 3.6 the CAN data structures
and the network infrastructure have been
extended to support CAN FD. Along with
these changes the virtual CAN driver (vcan)
has been updated in a way that it could be
switched to be a classic CAN or CAN FD
interface. By setting the vcan’s MTU value
to CANFD_MTU (72) with the existing ip
tool from the iproute2 package the virtual
CAN interface presents itself as a CAN FD
interface.

While this virtual CAN driver did a good job
when testing and enhancing the new CAN
FD infrastructure and the user tools it should
last more than a year until the first CAN
FD hardware became available. The first
CAN FD driver that emerged in the Linux
mainline kernel was for the Bosch M_CAN

iCC 2015 CAN in Automation

05-3

IP core version 3.0.1 (non-ISO). The driver
was included in Linux 3.18 in December
2014 and tagged as a ‘fixed non-ISO’
CAN FD controller later. In April 2015 the
PEAK System PCAN USB (pro) FD driver
was released with Linux 4.0. These USB
adapters can be switched to be ISO/non-
ISO at controller configuration time.

With classic CAN the configuration was
done with the ip tool from the iproute2 [7]
package [8] in order to specify the bitrate and
additional controller specific settings like the
sampling-point, synchronization jump width,
listen-only mode, triple sampling, one-shot
mode, etc.

The bitrate can be specified with either the
time quanta (tq), propagation segment (prop_
seg) and phase buffer segments (phase_
seg1 phase_seg2) or by providing a numeric
bitrate value which is then processed by the
bitrate calculation algorithm inside the Linux
kernel. The latter needs a set of controller
specific bit timing constants that define e.g.
the allowed minimum and maximum values
for the time segments, bitrate prescaler, etc.

For CAN FD these bitrate specific settings
have to be doubled to specify a second
bitrate: The data bitrate when BRS is set.

This summarizes to these extensions:

 • Second bitrate infrastructure
 • Enable/Disable CAN FD mode
 • Configure ISO/non-ISO mode

When the CAN FD mode is to be enabled
the data bitrate has to be specified and it
has to be greater or equal to the arbitration
bitrate which is placed in the first bitrate
infrastructure known from classic CAN. The
CAN FD mode setting changes the CAN
interface MTU to CAN_MTU or CANFD_
MTU accordingly.

Depending on the CAN FD controller
capabilities the ISO/non-ISO mode can be
specified by the ip tool or it is fixed with the
controller. E.g. the M_CAN IP version 3.0.1 is
fixed to non-ISO, which cannot be changed
at configuration time. On the other hand the
PEAK USB FD adapters can switch between

ISO and non-ISO at configuration time. The
attempt to modify a fixed ISO/non-ISO flag
leads to an invalid operation return code.

Finally the configuration of CAN FD
controllers became very similar to the classic
CAN controllers by just adding a second
bitrate set for the data bitrate and two CAN
FD specific configuration flags. The ip tool
from the iproute2 package was updated
for the release of Linux 3.15 to support
the second bitrate and the CAN FD mode
switching. The ISO/non-ISO configuration
was integrated in Linux 3.19 but backported
to Linux 3.18 to be able to tag the existing
M_CAN driver properly.

ISO	15765-2:2015	with	CAN	FD

The ISO 15765-2 CAN transport protocol
(TP) usually creates a point-to-point data
connection using two defined CAN identifiers
– one for each communication endpoint (e.g.
diagnosis equipment and engine control
unit). To be able to send data PDUs that
do not fit into a single CAN frame the ISO
PDUs are segmented using a bi-directional
segmentation protocol. This protocol is
implemented using (at least) the first byte
of the CAN frame payload – the so called
‘protocol control identifier’ PCI.

The PCI byte is defined as:

Table 1: ISO 15675-2 PCI
PCI function nibble bit value
SF Single Frame 0 0000xxxx
FF First Frame 1 0001xxxx
CF Consecutive Frame 2 0010xxxx
FC Flow Control 3 0011xxxx

While SF, FF and CF are sending PDU
data from node A to node B the FC is a
communication entity that is sent from
node B to node A in order to throttle the
communication flow according to the
recipients (node B) needs.

When the content of the PDU fits into a
single frame the SF frame is generated.
Simplified the PDU content has to be 7 or
less bytes on classic CAN as one byte is
always consumed by the PCI byte.

iCC 2015 CAN in Automation

05-4

When the content of the PDU does not
fit into a single CAN frame a FF frame is
generated which contains the PCI byte,
length information and some first data bytes
of the PDU. When node B is able to receive
the advertised number of bytes it answers
with a FC frame to get more segmented data
in the form of CF frames.
Due to the mandatory PCI byte which
consumes at least one byte from each CAN
frame payload the protocol overhead is
equal or greater than 12.5% in classic CAN
setups with 8 bytes per frame.

With CAN FD up to 64 bytes of payload can
be transmitted inside a CAN frame. This
moves the lower limit of overhead for ISO
TP to 1/64 = 0,015625 ~ 1.6%. Even if we
always need to add the standard overhead of
the CAN Identifier, control fields and CRC in
both cases this is a huge improvement which
can be even extended when using a higher
bitrate in the data section (BRS enabled).

With the knowledge from his own ISO15765-
2 [10] implementation for Linux and the CAN
FD changes in Linux the author initiated the
adaption of ISO TP for CAN FD at DIN/ISO
committee in early 2013. As the Linux kernel
was already supporting CAN FD at that time
the changes of the existing classic CAN
implementation assisted the conceptual
work. Whenever a concept was discussed
the public available implementation [9] gave
an indication of the expectable complexity of
that approach.

Table 2: ISO 15675-2 PCI for classic CAN
PCI	B[0] B[1] B[2] B[3] B[4]
SF 0000 LLLL data data data data
FF 0001 LLLL LLLLLLLL data data data
CF 0010 NNNN data data data data
FC 0011 FFFF Blocksize STm n.a. n.a.

(Formatting: All tables are cut after byte 4)

 • LLLL : PDU length information
 • NNNN : sequence number
 • FFFF : flow status information
 • Blocksize : 0 .. 15 (0 = disabled)
 • STm : Separation Time minimum
 • data : PDU payload data
 • n.a. : not assigned
 • B[x] : byte x in CAN frame payload

While CF and FC frames are not really
affected by the increased CAN frame length,
the possible PDU length of up to 63 bytes
cannot be described in the four length bits
available in the SF PCI byte.

To be able to discuss different CAN frame
payload sizes the ‘link layer data length’
(LL_DL) has been introduced into the ISO
document. As long as the LL_DL is 8 bytes
– as known from classic CAN – the new ISO
TP PDU segmentation concept behaves
exactly like the former specification of ISO
TP.

When the LL_DL is defined to be greater
than 8 bytes (12, 16, 20, .., 64) the length
information in the SF frame PCI is set to
zero and the length information is stored
in the following byte (Byte 1). Setting the
length information in the SF PCI byte to
zero is a protocol violation in the former ISO
15765-2 specification which makes older
implementations ignoring these SF frames.
On the other side this concept reduces
the maximum possible SF PDU size to
LL_DL – 2 bytes (e.g. 62 bytes for CAN FD
frames with 64 bytes).

As the configured LL_DL value is unknown on
the receiver side, the receiver automatically
adapts to the sender LL_DL depending
on the frame length of the FF frame when
starting a segmented communication.

Another enhancement of the FF definition
is basically not CAN FD dependent. The
12 bits for the FF length information allows
PDU sizes of up to 4095 bytes. To be able to
transfer larger PDUs (e.g. for measurement
data, configuration data, bootloader update,
etc.) a similar concept as known from the
SF length was developed: By setting the
former FF length information to zero, the
sender indicates that the length information
is available in the following 4 bytes. This
allows PDU sizes up to 2³²-1 bytes (~4GB).
When the new receiving implementation
detects this former protocol violation it takes
the next four bytes and can receive the
‘jumbo’ PDU with more than 4095 bytes –
even in classic CAN setups.

iCC 2015 CAN in Automation

05-5

Table 3 and Table 4 depict the PCI changes
for the extended length information in SF
and FF frames.

Table 3: SF PCI for LL_DL > 8
PCI	B[0] B[1] B[2] B[3] B[4]
SF 0000 0000 LLLLLLLL data data data

Table 4: FF PCI for PDU length > 4095
PCI	B[0] B[1] B[2] B[3] B[4] B[5]
FF 0001 0000 0 Len Len Len Len

The length information is presented in high-
byte first order as known from the former FF
length information.

A useful aspect of CAN FD enabled ISO
TP communication is the fact that classic
CAN frames and CAN FD do not interfere
in a CAN FD enabled setup. This means
that the CAN architect may assign two
CAN identifiers for the communication with
classic CAN frames – and he may assign
the identical(!) CAN identifiers for a CAN FD
enabled communication. As classic CAN
and CAN FD frames distinguish on the wire
two independent ISO TP communications
can be performed on the CAN bus in this
way.

Finally the introduction of CAN FD frames in
ISO 15765-2 leads to a mandatory padding
in the case that the PDU payload doesn’t fit
exactly into the CAN FD frame payload. In
such cases the rest of the CAN FD frame
shall be filled with 0xCC byte values as
recommended by Bosch. The 0xCC data
content allows the minimum of alternating
bus level changes (EMI friendly) without the
need to insert stuff bits.

ISO	15765-2:2015	with	Linux

While sending ISO TP PDUs in Linux is just
about opening a socket and read/write PDU
data to the given file handle the configuration
of ISO TP communication is done by so
called socket options.
These socket options are passed to the
socket at creation time to specify values
like block size (BS), STmin, extended
addressing parameters or padding
configurations. To be able to take advantage

of the CAN FD implementation a single new
socket option CAN_ISOTP_LL_OPTS has
been introduced to configure the link layer.
The data structure to configure the link layer
options is defined in [11] as

struct can_isotp_ll_options {
 __u8 mtu;
 __u8 tx_dl;
 __u8 tx_flags;
};

The element mtu specifies the generated
and accepted CAN frame type. As described
above the mtu can take values of either
CAN_MTU (16) to handle classic CAN
frames or CANFD_MTU (72) to work with
CAN FD frames only.
The tx_dl element specifies the LL_DL
value for generated CAN (FD) frames as the
protocol stack adapts to in incoming LL_DL
(rx_dl) automatically. The valid values for
tx_dl are specified by valid CAN FD data
lengths beginning with eight:
8, 12, 16, 20, 24, 32, 48, 64
N.B. when the mtu is set to CAN_MTU only
a tx_dl value of eight is allowed.
Finally the tx_flags element content is set
into the flags element of the canfd_frame
structure at frame creation time to configure
the CANFD_BRS setting for this socket.

ISO	15765-2:2015	CAN	FD	performance

While the ISO TP implementation for
CAN FD hypothesized an increased
performance in calculations and on the
virtual CAN interfaces the tests on real CAN
FD hardware were awaited eagerly. With
Linux 4.0 the driver for the PEAK USB FD
was available in a stable operating system
environment where it made sense to take
measurements with the latest ISO 15765-
2:2015 implementation.

With a set of shell scripts the existing ISO
TP command line tools have been arranged
in a way that classic CAN and different CAN
FD based communication setups can be
brought into meaningful relation.

The setup consists of two Linux PCs each
with an USB FD adapter connected to each
other with a terminated twisted pair CAN
line.

iCC 2015 CAN in Automation

05-6

The timestamps are taken from the receiving
node to make sure the entire PDU hit the
CAN bus. The test applications transferred
and received a PDU of 30.000 bytes with an
arbitration bitrate of 500 kbit/s and different
values for data bitrates (2/4/8 Mbit/s). The
separation time minimum (STmin) was set
to either 500µs or 100µs. As the test values
for 500µs did not differ substantially for
different data bitrates only a single table for
the 500µs measurement is depicted below.
To have a realistic and safe transport the
block size was set to its maximum of 15.

Table 5: Test 500µs STmin 0.5/2 Mbit/s
CAN LL_DL BRS secs Bytes/s
classic 8 - 2,926 10.256
FD 8 no 2,933 10.228
FD 8 yes 2,915 10.295
FD 16 no 1,380 21.754
FD 16 yes 1,351 22.205
FD 32 no 0,791 37.926
FD 32 yes 0,662 45.385
FD 64 no 0,625 48.000
FD 64 yes 0,329 91.463

As the separation time was 500µs there
could be seen no effect when increasing
the data bitrate. At higher data bitrates the
CAN bus had to handle fewer loads but bus
load was not the value we wanted to pay
attention at in this setup.

Table 6: Test 100µs STmin 0.5/2 Mbit/s
CAN LL_DL BRS secs Bytes/s
classic 8 - 1,460 20.562
FD 8 no 1,750 17.152
FD 8 yes 1,172 25.597
FD 16 no 1,085 27.649
FD 16 yes 0,548 54.744
FD 32 no 0,793 37.878
FD 32 yes 0,330 91.185
FD 64 no 0,614 48.859
FD 64 yes 0,225 133.333

Table 7: Test 100µs STmin 0.5/4 Mbit/s
CAN LL_DL BRS secs Bytes/s
classic 8 - 1,460 20.547
FD 8 no 1,749 17.162
FD 8 yes 1,166 25.751
FD 16 no 1,086 27.649
FD 16 yes 0,545 55.045
FD 32 no 0,792 37.878
FD 32 yes 0,265 113.207
FD 64 no 0,614 48.859
FD 64 yes 0,163 185.185

Table 8: Test 100µs STmin 0.5/8 Mbit/s
CAN LL_DL BRS secs Bytes/s
classic 8 - 1,462 20.533
FD 8 no 1,752 17.133
FD 8 yes 1,150 26.109
FD 16 no 1,085 27.649
FD 16 yes 0,545 55.147
FD 32 no 0,792 37.878
FD 32 yes 0,266 113.207
FD 64 no 0,614 48.939
FD 64 yes 0,131 230.769

With the relatively short STmin of 100µs the
PDU data throughput can be increased by
factor 11 (230.769 / 20.533) – even with a
configured block size of 15 which requires
the receiving node to acknowledge every
15th CF frame. Without bitrate setting (BRS)
the benefit of 64 byte CAN frames reduces
to factor 2.5 due to the better overhead ratio.
Finally the measurements points out that
using CAN FD without BRS and with LL_DL
of 8 preforms worse than classic CAN. As
CAN FD introduces additional control bits,
an increased CRC field size and a stuff bit
counter in the latest ISO implementation this
performance reduction was expected.

Summary

The new CAN FD protocol doesn’t only break
the compatibility to classic CAN on the wire
– it also breaks programming interfaces and
extends configuration options by introducing
new bitrates and payload lengths. This
paper gives an insight how programming
interfaces have been altered in Linux in
an evolutionary way without putting the
existing application programming concept
into question. Some of the presented ideas

iCC 2015 CAN in Automation

05-7

may be reused in other embedded setups
– some may be too Linux specific to do so.
By today CAN FD is fully supported by
Linux and by the provided tools to handle
and configure CAN FD specific content
and functionalities. Together with the free
ISO15765-2:2015 implementation Linux is
recommended as a stable and sustainable
testing and product platform for future CAN
FD applications.

Dr. Oliver Hartkopp
Volkswagen AG
Brieffach 1777
DE-38436 Wolfsburg
Tel. +49 5361 9 36244
oliver.hartkopp@volkswagen.de
http://www.volkswagenag.com

References
[1] 13th iCC 2012 – Paper Hartwich (Bosch)

http://www.can-cia.org/fileadmin/resources/
documents/proceedings/2012_hartwich.pdf

[2] http://git.kernel.org/cgit/linux/kernel/git/tor-
valds/linux.git

[3] http://git.kernel.org/cgit/linux/kernel/git/tor-
valds/linux.git/tree/include/uapi/linux/can.h

[4] https://github.com/linux-can/can-utils
[5] https://packages.debian.org/stable/can-

utils
[6] https://github.com/linux-can/can-utils/

commit/e7631bd7f94804962e48cde2e7de-
37370c31a8b8

[7] http://git.kernel.org/cgit/linux/kernel/git/
shemminger/iproute2.git/

[8] https://packages.debian.org/stable/iproute2
[9] https://github.com/hartkopp/can-isotp-mo-

dules
[10] ISO 15765-2:2011 document http://

www.iso.org/iso/catalogue_detail.
htm?csnumber=54499

[11] https://github.com/hartkopp/can-isotp-mo-
dules/blob/master/include/socketcan/can/
isotp.h

