
iCC 2017 CAN in Automation

02-1

CDCF	Introduction

The “Concise Device Configuration File” is
specified in CiA 302-3 [1]. In short, it is an
array of records with the following contents:

 Index (type UNSIGNED16)
 Subindex (type UNSIGNED8)
 Length (type UNSIGNED32)
 Data (type DOMAIN – any data, length)

A CANopen Master or test utility can pro-
cess this list and “execute” it as a sequence
of SDO (Service Data Object) write acces-
ses to a specific node, the device under test
(DUT). In traditional CANopen systems, this
file format can be used to configure a CA-
Nopen node, for example setting specific
heartbeat and/or PDO (Process Data Ob-
ject) transmission modes or event times.

Figure 1: Stand-alone CDCF usage

The CDCF file can typically be applied by
a CDCF player in both stand-alone mode
or during regular (pre)operation. In stand-
alone mode, only the player and the device
to be configured are connected to CAN, as
illustrated in figure 1.

The use case illustrated in figure 2 shows
how a CDCF player can also operate during
regular operation. However, in this case the
operator needs to ensure that the CANopen
SDO channel required to communicate with
the Device Under Test (DUT) is not used by
another device in the system.

Figure 2: CDCF usage during operation

Some application profiles such as CiA 447
support dedicated SDO channels and leave
the default CiA 301 SDO channels unused.
In such a scenario, a CDCF player can ope-
rate using the regular CiA 301 SDO chan-
nels at any time without the risk of collisions
due to multiple use of the same SDO chan-
nel / CAN IDs.

CDCF	“Execution”

Upon start, a CDCF Player needs to be told
(for example by configuration or interac-
tively by a user) which file should be execut-
ed towards which SDO channel (SDO client
commands send to which node ID).

Using	an	enhanced	CDCF	format	for	custom	
CANopen	device	testing	and	configuration

Bernhard Floeth, Adam Opel AG
Olaf Pfeiffer, Embedded Systems Academy GmbH

The	 “Concise	Device	Configuration	 File”	 format	was	 conceived	 to	 support	 a	 simple	
method	to	configure	a	CANopen	device.	The	CDCF	is	primarily	a	list	of	write	accesses	
for	an	Object	Dictionary.	
This	paper	describes	an	enhanced	CDCF	 format	which	supports	various	commands	
including	setting	timeouts,	reading	back	values	for	confirmation,	transmitting	the	NMT	
master	message	and	executing	a	LSS	Master	cycle.	These	commands	support	custom	
test	 sequences	 including	 identification.	A	player	 supporting	 this	 format	 can	verify	 if	
a	device	matches	the	CDCF	(for	example	vendor	ID	and	product	code	match),	before	
continuing.	The	files	required	can	be	created	based	on	CSV	files	as	supported	by	spread	
sheet	programs,	which	greatly	simplifies	CDCF	generation	and	editing.

iCC 2017 CAN in Automation

02-2

Figure 3: CDCF write process

The player sends the entries in the CDCF
one-by-one as a SDO client command to
the selected node ID as illustrated by figure
3. Each transmitted SDO client write access
requires a SDO response from the DUT for
the next step to be executed.

Drawbacks	of	CDCF	usage

Figure 4: Possible interactions

As is, the CDCF is just a list of data for Ob-
ject Dictionary entries. There is no timing
information (how fast to execute the se-
quence) or device information (to identify if
this file is for a specific device only) or flow
control (only continue if the CANopen de-
vice has specific values at selected Object
Dictionary entries).
There are no physical layer settings asso-
ciated with a CDCF: CAN bitrate used, ti-
meouts and delays for SDO transfers or the
node ID of the device this file is intended for.

Requirements	for	custom	test	
sequences

In order to make the CDCF usable for custo-
mizable test sequences or device identifica-
tion, new commands need to be specified.

File identification, version, comments
These allow an identification of a specific
CDCF. Name, comments and version infor-
mation can be added.

CDCF Player Settings
Support setting of CAN bitrate, node ID,
SDO timeouts and delays. Configure num-
ber of retries on failures and logging options
for debugging and test of the CDCF.

Active Controls
Define pauses or wait for action of the se-
lected device, such as a bootup message or
an operational heartbeat. Initiate the execu-
tion of a LSS Master Cycle or an NMT Mas-
ter message. Execute a SDO read access
instead of a write access.

Figure 5: Verification of entries

Support of reading and verifying the con-
tents of Object Dictionary entries is an es-
sential new feature to ensure that the selec-

iCC 2017 CAN in Automation

02-3

ted target DUT meets the requirements for
the following configuration.

Command	definition

To keep the new CDCF enhancements
backward compatible, all new commands
should be “hidden” in the existing regular
records with Object Dictionary entries. The
extend commands defined in this document
stick to the existing record format. An Index
value of 0F0Fh is used to identify enhanced
commands. In CANopen this index value is
currently reserved [2].
Whenever the device executing the records
of a CDCF reaches a record with the Index
0F0Fh, it does not immediately generate an
SDO write but interprets the contents as an
extended command to execute and proces-
ses it accordingly.
A CDCF executing device that is not capa-
ble of interpreting these commands will ge-
nerate an SDO write to Index 0F0Fh which
will result in an SDO Abort as 0F0Fh is a
reserved value in the CANopen Object Dic-
tionary.

List	of	new	commands

Informational Strings
These strings do not have any effect on the
CANopen communication. They are used to
identify the file or offer additional progress
or debug information. If a CDCF player has
a display, these can be shown to the user
while the CDCF file is processed.

[0F0Fh,01h] VISIBLE_STRING,
File Information:
String with information about this file, no
further effect.

[0F0Fh,02h], VISIBLE_STRING,
Conditional Error Info:
String with error information, no effect, just
treated as a comment. This error is consi-
dered “occurred” if the PREVIOUS record
in the CDCF produced an error (could not
handle or abort returned).
[0F0Fh,03h], VISIBLE_STRING,
Comment:
String with a comment.

[0F0Fh,01h], VISIBLE_STRING,
User action:
String to display to user and wait for user
action. This could be a message to the user
like “now power cycle the device”.

CDCF Player Settings
This group of commands specifies settings
that are typically made within a CDCF player,
like selecting a specific node ID to which the
SDO requests are send or setting timeouts.

[0F0Fh,11h], UNSIGNED8,
Set Bit Rate:
If the bit rate is known, it may be specified
here. Values are as defined by [3].
FFh: use default of player
0: 1 Mbit/s
1: 800 kbit/s
2: 500 kbit/s
3: 250 kbit/s
4: 125 kbit/s
5: reserved
6: 50 kbit/s
7: 20 kbit/s
8: 10 kbit/s
9-FEh: reserved

[0F0Fh,12h], UNSIGNED8,
Set Node ID:
The CDCF file containing this command is
intended for the node ID (1-127) specified.
FFh: use default of player
1-7Fh: use this node ID
80h-FEh: reserved

[0F0Fh,13h], INTEGER8
Next Node ID Offset:
Add this value to the currently used default
node ID. This allows working on different no-
des or nodes which change their node ID,
for example when in bootloader mode.

[0F0Fh,14h], UNSIGNED16,
SDO timeout:
Sets the SDO timeout used for the read/wri-
te accesses to the value passed (in ms).
FFFFh: use default setting of player

[0F0Fh,15h], UNSIGNED16,
Back to back delay:
Sets the delay used between processing in-
dividual records in the CDCF (in ms).
FFFFh: use default of player

iCC 2017 CAN in Automation

02-4

[0F0Fh,16h], UNSIGNED8,
Maximum retries:
If an SDO access fails (Abort or wrong data
read), then retry up to this maximum.
FFh: use default of player

[0F0Fh,17h], UNSIGNED8,
Logging detail:
Enables/disables the generation of a log file
by the CDCF player, if supported.
0: disable
1: enable – detail level minimum
2: enable – detail level plain
3: enable – detail level detail
4: enable – detail level debug
5-255: reserved

Active Control
These commands allow activating controls
in the CDCF player including NMT Master
functionality.

[0F0Fh,21h], UNSIGNED16,
Pause/delay:
Pause execution of the CDCF player for this
delay (in ms).

[0F0Fh,22h], UNSIGNED8,
Wait for action:
0: wait for a bootup of node
5: wait for node to be operational
7Fh: wait for node to be pre operational
FFh: wait for any next heartbeat of node
All other values are reserved.
[0F0Fh,23h], UNSIGNED16,
Request execution of NMT command:
Request generation of a NMT command,
the 16bit value contains the 8 bit NMT com-
mand (bit 0-7) 8 bit Node ID (bit 8-15).

[0F0Fh,24h], LSSMASTERRECORD,
Run a LSS Master Cycle:
Starts a LSS Master cycle, the LSSMAS-
TERRECORD contains
UNSIGNED32 Vendor ID
UNSIGNED32 Product Code
UNSIGNED32 Revision
UNSIGNED32 Serial Number
UNSIGNED8 Node ID to assign
A value of all bits set means “use default”
of CDCF player or do not care if not further
specified.

[0F0Fh,25h], UNSIGNED8,
Execute SDO Read:
The next CDCF record is NOT executed
as an SDO write. It is executed as an SDO
read. Data is read into a local buffer (can
later be used by subindex 26h)
Bit 0: match / no match - ignore data
returned or verify it matches
Bit 1: wait for – if data returned does not
match then wait for repetition timeout and
try again, maximum of retries (Subindex 4)
Bit 2-7: reserved

[0F0Fh,26h], UNSIGNED8,
Execute SDO Write from buffer:
The next CDCF record gets executed, but
with data inserted from the local buffer, this
allows writing back data previously read.
Data field unused, set to FFh.

Usage	example:	Identification	of	device

A CDCF can now be associated with a spe-
cific device or device class by matching up
its Vendor ID, Product Code, Revision in-
formation or even serial number. Execution
aborts, if the desired entries do not match.
For both test or configuration sequences
this ensures that a CDCF only gets execut-
ed on those devices it was generated for. A
CDCF can be generated to only match and
work with an individual device (match down
to serial number) or any device from a se-
ries (match to vendor ID, product code and
possibly revision number).

Usage	example:	Test	sequences

Supporting user interactions allows end of
production line testing for output devices
such as roof bars for police cars as defined
by CiA 447 [4]. After each switch of an out-
put, a user interaction like “verify if light xyz
is now on” can be displayed on the CDCF
player. The person running the test can
now manually trigger execution of the next
sequence by pushing a button/dial on the
CDCF player.

Usage	example:	Safe	and	custom	
configurations

Some devices require a dedicated
sequence in order to enable a custom

iCC 2017 CAN in Automation

02-5

configuration mode. This might involve rea-
ding an entry and writing it back. With the
enhanced functions a CDCF player can ve-
rify that the device under configuration is
truly the device expected (read and verify
selected entries), as well as execute custom
sequences to activate a possible custom
configuration mode.

Usage	example:	Boot	loading

A CDCF can now contain all data and com-
mands for boot loading a specific device.
First a match verifies that this is the cor-
rect device, then the bootloader gets acti-
vated and last the sequence is executed to
re-program/flash the firmware in the target
device. This allows sending an “end user”
device specific firmware update files that
cannot accidently be programmed into the
wrong device as it can be associated to the
specific device the user has in his system.
If needed, verification can go down to the
serial number, so that a CDCF containing
new code only works for one device with a
specific serial number.

File	generation	and	editing

Embedded Systems Academy provides a
converter utility program that allows gene-
rating a CDCF from a comma separated va-
lue file as creatable with any spread sheet
program such as Microsoft Excel. It simply
contains the columns Index, Subindex and
Data, the length information gets automati-
cally calculated and inserted. If the data is
too big to fit into the data column, the entry
can also refer to a file that later gets inserted
as data for this entry.

Availability

A free CDCF player supporting the com-
mands listed in this paper is provided by
Embedded Systems Academy. The free
“CANopen File Player” can be downloaded
from their web page and can directly execu-
te .csv files.
In addition, enhanced CDCF players are
implemented within the CANopen Diag sys-
tems.
All implementations support setting default
parameters (for example for bit rate, time-

outs and delays) as well as selecting one
of multiple CDCF files stored on the sys-
tem. User messages and interactions are
supported and for each execution a log file
can be created documenting the progress of
execution of the CDCF.
The system is used by suppliers to
Opel/GM to test their CiA 447 devices. In
CiA 447 CDCF based test can be executed
on individual devices under test (no other
devices connected to the tester) as well as
on devices in a CiA 447 system (testing on
a live network).

References
[1] CiA 302-3, Additional application layer

functions, Configuration and program
download

[2] CiA 301, CANopen application layer and
communication profile

[3] CiA 305, Layer Setting Services (LSS) and
protocols

[4] CiA 447, Car add-on devices

Bernhard Floeth
Adam Opel AG
Bahnhofsplatz 1
65423 Rüsselsheim

Olaf Pfeiffer
Embedded Systems Academy GmbH
Bahnhofstraße 17
30890 Barsinghausen
Tel.: +49-5105-582-7897
Fax: +49-5105-584-0735
opfeiffer@esacademy.de
www.esacademy.com

