
iCC 1994
1st international CAN Conference

in Mainz (Germany)

Sponsored by

Allen Bradley
National Semiconductor
Philips Semiconductors

Organized by

CAN in Automation (CiA)
international users and manufacturers group

Am Weichselgarten 26
D-91058 Erlangen

Phone +49-9131-69086-0
Fax +49-9131-69086-79

Email:headquarters@can-cia.de
URL: http://www.can-cia.de

DeviceNetTM Application Protocol

Authors: Dan Noonen, Stuart Siegel, Pat Maloney

Allen-Bradley 747 Alpha Drive Highland Heights, Ohio 44143 (USA)
(216) 646-5000

Abstract

DeviceNet is an open network developed by Allen-Bradley based on CAN that is
designed to allow low cost industrial control devices to communicate with each
other. DeviceNet is defined in terms of an abstract object model which presents
the suite of communication services available and describes the externally visible
behavior of a DeviceNet node. The DeviceNet Model is application independent.
DeviceNet provides the communication services needed by various types of
applications. Many of today's lower level industrial control devices must retain
their low cost/low resource characteristics even when directly connected to a
network. DeviceNet takes this into consideration by defining a specific instance
of the Model for communications typically seen in a Master/Slave application. This
is referred to as the Predefined Master/Slave Connection Set. This paper
describes the DeviceNet Communication Model and presents the Predefined
Master/Slave Connection Set.

DeviceNet Abstract Object Model

A DeviceNet compliant device is abstractly modeled as a collection of objects. An object provides a logical
interface to the internal components of a device (e.g. logic, memory, etc.) and defines how that device
reacts to particular events. The object model includes both communication specific objects and
application specific objects (see figure 1). The communication objects manage and provide for the run-
time exchange of messages across DeviceNet, while the application objects implement the product
specific features and provide a logical interface to product specific information. Although the definition
and implementation of the application objects are just as important as the communication objects, this
paper discusses the communication model.

DeviceNet Node

Application
 Objects

Communication
Objects

A Message

A Message

Digital
Input

Config

Figure 1 - DeviceNet Abstract Model

DeviceNet Addressing

In order to access internal components/logic within a device, the DeviceNet Communication Model
defines an addressing scheme that provides access to objects within a device. This information is
physically represented within the DeviceNet protocol (See figure 2). The object model addressing
information includes:

Device Address - Referred to as the Media Access Control Identifier (MAC ID). This is an integer
identification value assigned to each node on DeviceNet. This value distinguishes a node among
all other nodes on the same link. A test at power-up guarantees the uniqueness of the value on
the network (duplicate MAC ID detection).

Class Identifier (Class ID) - The term Class refers to a set of objects that represent the same
type of system component. The Class ID is an integer identification value assigned to each
Object Class accessible from the network.

Instance Identifier (Instance ID) - The term Instance refers to the actual representation of an
object within an Object Class. The Instance ID is an integer identification assigned to an Object
Instance that identifies it among all Instances of the same Class within a particular device.

Attribute Identifier (Attribute ID) - Attributes are parameters associated with an Object Class
and/or an Object Instance. Attributes typically provide some type of status information or govern
the operation of an object. The Attribute ID is an integer identification value assigned to a Class
and/or Instance Attribute.

Service Code - An integer identification value which denotes a particular Object Instance and/or
Object Class function.

MAC ID #1MAC ID #1MAC ID #1 MAC ID #2

Object Class #5

Instance #1

MAC ID #3

DeviceNet Link

Object Class #5

Instance #1

MAC ID #3

Object Class #7

Instance #1

MAC ID #4

Object Class #7

Object Class #5

Instance #1

Instance #2

Attribute #1
Attribute #2

MAC ID #4:Object Class #5:
Instance#2:Attribute #1

Figure 2 - DeviceNet Addressing Scheme

The use of the addressing scheme allows a simple yet robust device definition that covers a large range of
product functionality and cost.

DeviceNet Connection Overview

DeviceNet defines a connection-based scheme to facilitate all application communications. A DeviceNet
connection provides a communication path between multiple end-points (such as attributes of objects).
A connection is established between two or more end-points prior to exchanging data.

Connection Objects model the communication characteristics of a particular Application-to-Application
relationship. The Connection Object is one of the Communication Objects within the DeviceNet Object

Model. A Connection Object can be viewed as the container for characteristics associated with a
communication relationship being managed by a particular device.

DeviceNet defines two types of Connections:

I/O Connections - Provide dedicated, special purpose communication paths between a producing
application and one or more consuming applications. I/O Messages are exchanged across I/O
Connections. I/O Messages carry application specific I/O data.

Explicit Messaging Connections - Provide generic, multi-purpose communication paths between
two devices. These connections often are referred to as Messaging Connections. Explicit
Messages are exchanged across Explicit Messaging Connections. Explicit Messaging provides
the typical request/response-oriented network communications used to perform node
configuration (e.g. parameter upload/download) and/or problem diagnosis.

An I/O message consists of a Connection ID and associated I/O data. DeviceNet does not define any
protocol information resident in the CAN Data Field of an I/O Message whose length is less than or equal
to 8 bytes. The meaning of the data within an I/O Message is implied by the associated Connection ID.
The connection end-points are assumed to have knowledge of the intended use or meaning of the I/O
Message (See figure 3).

Device #1

I/O
Producing

Application
Object

Producing
I/O

Connection
Object

I/O data

Device #2

I/O
Consuming
Application

Object

Consuming
I/O

Connection
Object

I/O data

I/O Message

Figure 3 - I/O Connection

Explicit Messages are used to command the performance of a particular task and to report the results of
performing the task. DeviceNet does define protocol information that is passed in the CAN Data Field of
an Explicit Message. An Explicit Message consists of a Connection ID and associated messaging protocol
information (See Figure 4).

Device #1 Device #2

Explicit Messages

Explicit
Messaging
Connection

Object

Explicit
Messaging
Connection

Object

A request

A reply

A request

A reply

Figure 4 - Explicit Messaging Connection

A node can have multiple Connection Objects (instances of the Connection Object Class) active at any
point in time. This enables the management of multiple communication relationships within a single
device. Device developers must analyze the associated cost/performance trade-offs during
development.

DeviceNet also defines a fragmentation protocol which provides for the exchange of messages (either I/O
or Explicit) greater than 8 bytes.

DeviceNet CAN Identifier Field Definition

DeviceNet is based on Part A of the Bosch CAN Specification which defines an 11 bit identifier field.
These 11 bits are subdivided into four separate message groups: Group 1, Group 2, Group 3, and Group
4 (See Figure 5).

 IDENTIFIER BITS

10 9 8 7 6 5 4 3 2 1 0

HEX
RANGE

 IDENTITY
USAGE

Group 1
Message ID

Source MAC ID 000 -
3ff
400 -
5ff
600 - 7bf

7c0 - 7ef

7f0 - 7ff

Message Group 1

Message Group 2

Message Group 3

Message Group 4

Invalid CAN Identifiers

1

x x x x

10 9 8 7 6 5 4 3 2 0

 MAC ID
Group 2
Message ID

Source MAC ID

Group 4 Message
 ID (0 - 2f)

0

01

1 1

1

Group 3
Message ID

 1 1 1 1 1 1 1

 1 1 1 1 1

Figure 5 - DeviceNet CAN Identifier Field Definition

The CAN Identifier Field on DeviceNet contains the following components:

Message ID - Identifies a particular message within a particular Message Group. The value is given
meaning via dynamic configuration, during product development, or by the DeviceNet
Specification itself (Message Groups 2 and 3 reserve certain Message IDs for DeviceNet defined
purposes).

Source MAC ID - The MAC ID assigned to the device performing the transmission. Message
Groups 1 and 3 require the specification of the Source MAC ID within the CAN Identifier Field.

Destination MAC ID - The MAC ID assigned to the device which to receive this message. Message
Group 2 allows the specification of either the Source or Destination within the MAC ID portion of the
CAN Identifier Field.

Due to the CAN bus arbitration, the Groups provide for different bus access priorities. The Groups are
prioritized so that Group 1 has the highest priority and Group 4 has the lowest priority. Within Groups 1
and Group 3, bus access priority is based on the Message ID and is evenly distributed among all the
devices on the network. When two or more Group 1 or Group 3 Messages are arbitrating for CAN bus, the
message with the numerically lower Message ID value will win arbitration and gain bus access. Within
Group 2, bus access priority is based on the MAC ID. When two or more Group 2 Messages are arbitrating
for the CAN bus, the message with the numerically lower MAC ID value will win arbitration and gain bus
access. Use of Group 4 is currently reserved/TBD.

Both I/O and Explicit Messaging Connections can be established within any one of the Message Groups.
This allows for the appropriate prioritization of information to be exchanged within the system. Although
the DeviceNet communication model does not specify the types of connections that can be supported

within each group, use of Group 1 for I/O connections, Group 2 for I/O and Explicit Message Connections,
and Group 3 for Explicit Message Connections appears to be becoming a defacto standard.

Connection Establishment Overview

The main goal of DeviceNet is to provide for the run-time exchange of input and output information
pertinent to a particular application. DeviceNet defines constructs for the full dynamic configuring I/O
Connections between devices. It is important to note, though, that DeviceNet does not require any
particular level of product support for the full dynamic configuration of connections. A particular product
may configure a large percentage of its "connection information" during power-up such that a small
amount of run-time configuration is necessary to open up the flow of I/O to/from that device.

The DeviceNet specification pre-defines a set of connections that facilitate the communications typically
seen in a Master/Slave relationship. These connections are referred to as the Predefined Master/Slave
Connection Set. The Predefined Master/Slave Connection Set removes many of the steps involved in
the full, dynamic configuration of connections. This, in turn, presents the means by which a
communication environment can be established using less network and device resources.

Dynamic Connection Configuration

Explicit Messaging Connections are dynamically established by the exchange of an Unconnected Explicit
Request/Response Transaction. Unconnected Explicit Messages are used to perform Connection
Management functions and are transmitted within Message Group 3 (See figure 6)

IDENTIFIER BITS

10 9 8 7 6 5 4 3 2 1 0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

0

0

0

0

0

0 0

0

00

0

0

Source MAC ID

Message ID
Meaning

Group 3 Message Identifier

Source MAC ID

Source MAC ID

Source MAC ID

Source MAC ID

Source MAC ID

Source MAC ID

Source MAC ID

Unconnected Explicit Response Messages

Unconnected Explicit Request Messages

 NOT USED WITHIN GROUP 3

Figure 6 - Detailed Group 3

As illustrated above, Message IDs 5 and 6 within Message Group 3 are reserved by DeviceNet. A Group 3
Message whose Message ID is 5 or 6 is processed by the Unconnected Message Manager (UCMM)
within a device. The Unconnected Message Manager transmits/receives/processes messages that are
not sent of a previously established connection.

Assume that the node whose MAC ID is 3 wants to establish an Explicit Messaging Connection with the
node whose MAC ID is 4. The illustration below depicts the main components of the transaction executed
to established the desired connection.

Service Field :
[Open Messaging

Connection
Request]

MAC ID = 3

Messaging
Connection

Management
Identifier

Destination
MAC ID [4]

Additional
Arguments

Messaging
Connection

Management
Identifier

Destination
MAC ID [3]

Additional
Arguments

MAC ID = 4

CAN Identifier
Field

CAN Data Field

CAN Identifier
Field

CAN Data Field

request

reply
Service Field :

[Open Messaging
Connection

Reply]

Figure 7 - Open Connection Request/Reply

Following the successful completion of this transaction, an Explicit Messaging Connection exists between
the two devices (see Figure 2). Each device created and configured a Connection Object during this
transaction.

I/O Connections are dynamically established by utilizing services available across an Explicit Messaging
Connection. The following list presents the tasks necessary to dynamically establish and I/O connection:

1. Establish an Explicit Messaging Connection with one of the intended end-points of the I/O
Connection

2. Create an I/O Connection Object by sending a Create Request to the Connection Class
across the Explicit Messaging Connection established in step #1.

3. Configure the newly created I/O Connection Object using various Explicit Messaging
Services.

4. Apply the configuration parameters loaded into the I/O Connection Object in step #3. This
informs the end-point that the I/O Connection Object is now fully configured.

5. Repeat this process within the other end-point(s).

In summary, Explicit Messaging Connections are dynamically established by performing a DeviceNet
defined Unconnected Explicit Messaging transaction. Parameters associated with this transaction enable
both end-points to fully configure an Explicit Messaging Connection Object that is capable of exchanging
Explicit Messages with the other end-point. I/O Connections are dynamically established by utilizing
various services available across an Explicit Messaging Connections. Various requests and responses are
exchanged across an Explicit Messaging Connection to create the desired I/O Connection Object within
an end-point. This process is repeated with all devices required to participate in the I/O Connection.

Connection Object Attributes

A Connection Object provides attributes that control and/or indicate the following:

 1. The Object's state.
 2. The Object's type (I/O vs. Messaging)
 3. The internal Application Object(s) associated with this Connection Object. This tells the node the
 information that is to be transmitted (produced) and/or where to put information when it is received
 (consumed).
 4. Whether the Connection Object is producing only (transmitter), consuming only (receiver), or both
 producing and consuming.
 5. If the Connection Object is supposed to produce, then the following information is also specified
 through Connection Object Attribute settings:
 - The event that triggers the production

 - The value to place in the CAN Identifier Field (an Identifier Field formatted as defined in figure 5)
 - The amount of data to be transmitted
 6. If the Connection Object is supposed to consume, then the following information is also specified
 through Connection Object Attribute settings:
 - How often to expect the consumption and what to do if the message is not consumed in a timely
 fashion
 - The value that will be specified within the CAN Identifier Field of the message that is to be consumed
 - The amount of data that is to be received

These parameters are configured in establishing an I/O Connection.

Predefined Master/Slave Connection Set:

While DeviceNet provides a powerful Application Layer Protocol that allows for the dynamic configuring of
connections between end devices, it has been recognized that some devices will neither have the need
nor the resources to utilize this powerful capability. For this reason a set of connection identifiers known
as the Predefined Master/Slave Connection Set have been specified to simplify the movement of the I/O
and configuration type data typically seen in a Master/Slave architecture (see figure 8).

MISC I/O PROX
SENSER

SMART
MOTOR

PROTECTOR

ACTUATOR

DeviceNet

PLC
SCANNER

MASTER

SLAVES
PHOTO-

ELECTRIC
SENSOR

Figure 8 - Typical Master/Slave Architecture

Many, if not most, sensor/actuator devices are designed to perform some predetermined function
(pressure sensor, motor starter, etc.) and as such the type and amount of data the device will produce
and/or consume is known at power-up.

Typically these devices provide input data or require output data and they require configuration type data.
The Predefined Master/Slave Connection set meets these needs by providing connection objects that
are almost entirely configured at the time the device powers up. The only remaining step necessary to
begin the flow of data is for a master device to "claim ownership of" this predefined connection cet within
its slave(s). Figure 9 below reveals the identifiers associated with the predefined connections. From this
figure we can see request and response identifiers have been specified for three connection instances.

IDENTIFIER BITS

10 9 8 7 6 5 4 3 2 1 0

1

1

1

1

1

1

1

0

0

1

1

1

0

Source MAC ID

Description

Source MAC ID

Source MAC ID

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

11

1

Group 1
Message ID

Source MAC ID

Source MAC ID

Source MAC ID

Source MAC ID

MAC ID
Group 2
Message ID

0

0

0

0

0 0

0

0

0

00

0 1

1

1 1

1

111

1

1

1

1

Destination MAC ID

Destination MAC ID

Destination MAC ID

Destination MAC ID

Group 1 Messages

Group 2 Messages

Slave's I/O Bit-Strobe Response Message

Slave's I/O Poll Response Message

Master's I/O Bit-Strobe Command Message

Reserved for Master's Use -- Use is TBD

Slave's Explicit Response Messages

Master's Explicit Request Messages

Master's I/O Poll Command Message

Group 2 Only Unconnected Explicit Request Messages

Duplicate MAC ID Check Messages

Reserved for Master's Use -- Use is TBD

 Note that Group 2, Message ID=6 is reserved for use
 as the Group 2 Only Unconnected Explicit Request message port.

Group 2 Messages

Figure 9 - Predefined Master/Slave Connection Set Identifiers

The predefined connection instances are:

Explicit Messaging Connection: Used to transfer configuration type or other non-periodic data.
Poll I/O Connection: Used to transfer I/O data when polled by the master.
Bit Strobe I/O Connection: Used to transfer I/O data when strobed by the master

A master sends a Poll Message to each slave that supports the Poll I/O Connection. A Master sends 1
Strobe message that is received simultaneously by all slaves. A slave utilizing this predefined connection
set must support the Explicit Messaging Connection and at least one of the I/O connections. If a slave
supports the Poll I/O Connection it will produce/consume its I/O data when the master sends the Poll
Command Message. If the slave supports the Bit Strobe Connection it will consume its output data (1 bit
maximum) and produce its data. The fact that the Bit Strobe command message is a multicast message
makes it highly efficient for moving small amounts of I/O data to actuator devices while, at the same time,
triggering sensor devices to produce their input data.

The object model of a typical slave device is shown in Figure 10. The figure shows the three connection
instances of the Predefined Master/Slave Connection Set and their relationship to the other objects
contained within the slave's object model. The shaded objects are common to all DeviceNet devices while
the non shaded objects will depend upon the application.

I/O Objects

Parameter
Object

Identity Object

Assembly
Object

Message Router

DeviceNet
Object

DeviceNet
Network
Interface

Polled
I/O

Explicit
Msg

Connection Class

Application

Network

Link/Physical

Bit
Strobed

I/O

Figure 10 - Slave Device Object Model

As stated previously the whole purpose of the Predefined Master/Slave Connection Set is to provide an
efficient, easily implementable version of the DeviceNet protocol. Supporting a bulky protocol may be too
much to ask of low end (low cost) microprocessors. A sample implementation of a Slave device using the
Predefined Master/Slave Connection Set resulted in the following:

ROM size = 2.5K bytes
RAM usage (depending upon configuration data size) = about 100 bytes
Communication Interrupt Latency = < 160 uSec

With resource requirements like these, even low end microprocessors can bring the power of networked
technology to low cost sensor/actuator devices.

Conclusion:

DeviceNet supports a connection-based communication scheme that allows for the transfer of data and
messaging traffic over CAN. It is designed to allow the implementation of both simple and complex
devices, and supports many common communication paradigms (such as master/slave, multi-master,
peer-to-peer). The DeviceNet communication architecture allows users to define the information sent
between devices using the connection-based scheme.

