
iCC 1994
1st international CAN Conference

in Mainz (Germany)

Sponsored by

Allen Bradley
National Semiconductor
Philips Semiconductors

Organized by

CAN in Automation (CiA)
international users and manufacturers group

Am Weichselgarten 26
D-91058 Erlangen

Phone +49-9131-69086-0
Fax +49-9131-69086-79

Email:headquarters@can-cia.de
URL: http://www.can-cia.de

Martin Gergeleit, Hermann Streich1

Implementing a Distributed High-Resolution
Real-Time Clock using the CAN-Bus

Many time critical applications, e.g. measurement devices, require a real-time
clock with an accuracy in the order of microseconds. In a centralised system
this is easy to implement with standard timer devices, but in a distributed
system (like a number of sensor and actor nodes connected via the CAN-bus)
this is more difficult as there is no global system tick. This problem can be
solved by synchronising the local clocks of all nodes with a sufficient
accuracy. The tight timing guaranties of a CAN-network offer a simple and
cheap possibility to provide such a global clock without additional hardware.

The real-time group of GMDs CREW Project has designed and implemented a
clock synchronisation protocol on the CAN-bus that provides a global time
base with an accuracy of about 20 microseconds. The protocol is simple and
hardware-independent. It uses only a small amount of bandwidth (< 20
messages/second) and works with a single, arbitrary CAN-object. If necessary,
e.g. in large scale networks, the protocol can be synchronised with an external
time-base, like a GPS satellite receiver.

Introduction

Many time critical applications, e.g. measurement devices, require a real-time clock with an accuracy
in the order of microseconds. In a centralised system this is easy to implement with standard timer
devices. But in a distributed system, where accurate time may be needed in different physical
locations, this is more difficult to achieve as there is no global system tick. A protocol that
synchronises accurate local clocks in the cooperating nodes provides a solution to this problem. A
number of such protocols for networks of workstation-like computers have been proposed so far (like
TEMPO [Gus86] and DCNET [Mil81]). As these solutions have to deal with different network
topologies and a-priori unknown message latencies, they seem to be too heavy-weight to be ported to
an environment of embedded low-cost controllers. For these applications a solution has to be provided
that takes advantage of the properties of the existing system and thus requires no extra hardware and
only a small amount of additional resources.

Today's microcontrollers typically have a build-in timer that provides a local clock with a resolution in
the order of microseconds and with an accuracy of about 10-5 to 10-6. This means that an
unsynchronised local clock may drift 1 to 10 microseconds per second compared to an absolute
external time. Thus, in a network the differences in the local clock values can reach 1/100 of a second
within several minutes. For applications where cooperative activities have to occur simultaneous or
where distributed measurements have to be coordinated via local time-stamps such a clock behaviour
is unacceptable. The problem can be solved by synchronising the local clocks of all nodes with a
sufficient accuracy. In an environment of embedded controllers this could be done with an additional
wire, but if the devices are connected by a field-bus anyway, it is the simpler and more flexible
alternative to utilise this connection. In addition, the tight timing guaranties of a field-bus network like
the CAN-bus[Bosch] assist in the implementation of a cheap and robust synchronisation protocol that
can provide the necessary accuracy.

The System

This paper proposes a simple protocol that synchronises the local clocks of nodes connected to a field
bus, especially a CAN-bus. All participating nodes have local clocks with possibly different accuracies.

The local clocks are probably implemented using the usual timer facilities of the standard
microcontrollers. Thus, the typical accuracy of these clocks is in the order of microseconds. One clock
on the network is assumed to be the dedicated 'master' clock. The remaining clocks in the network,
called 'slaves', are synchronised to the value of the master clock. The master can be a free running
clock if only an internal synchrony of the connected nodes is desired. If instead synchrony with the
absolute time of the real world is needed, the master has to be synchronised to an external time
provider, like e.g. a GPS satellite receiver.

CAN-bus

slave 1 slave 2 slave 3

external clock
master

Figure 1: The system configuration

At least the slave clocks have to provide some means for adjusting their time value with a delta-value.
In the most simple case this can be done by simply adding or subtracting the delta-value, but this
results in non-monotonous time values and sudden jumps of the clock. In applications where this is not
acceptable a smooth clock adjust has to be provided. This means that the clock virtually speeds up or
slows down until the delta-value has been compensated. This can be implemented either by really
changing the clock rate or, more simply, by leaving out or repeating single clock ticks (e.g. during timer
overflow processing). In our test environment we are using adaptive clocks. This means the clocks try
to adjust themselves, if they detect that they have a certain drift. They account for their adjust values.
If these values are always positive, which means the clock runs too slow (or always negative; the clock
runs too fast), then the clock increases or decreases its speed permanently. This is done again by
leaving out or repeating single ticks.

The Protocol

The protocol relies on three basic assumptions about the network, the controller hardware, and the
involved software. The presented approach is not restricted to the CAN-bus, but it can be used on
every network that fulfils the following requirements:

1. A successfully sent frame arrives at all nodes with a fixed and known delay. This means, the
underlying network has to be a broadcast network. The delay may be approximated as zero,
constant, or even a function of the receiving node.

2. The delay from the transmission and reception of a frame to an interrupt service routine that time-
stamps this event is known and has only a very small variance. Again, this delay and its variance
may be functions of the receiving node.

3. A time bound for the maximum time between two valid synchronisation messages tmax can be
guaranteed.

These assumptions hold for a CAN-bus network. The CAN-bus is a broadcast network and its physical
specification guarantees, that the bus length is always significantly shorter than the length of one
transmitted bit on the bus. This means, that the capacity of the CAN-bus is zero and that all connected
nodes will see a logical bus level at about the same time. This property is inherent to all possible
physical CAN-layers, as e.g. the CAN-bus arbitration method requires this degree of synchrony
between all participants on the network. Thus the delay on a CAN network can be approximated as
zero (this is not true for other networks, like e.g. Ethernet).

The second condition has to be ensured by the hardware design and the software of the connected
nodes. Standard microcontroller-based solutions using the currently available CAN-bus controller
chips [Int89, Phi90] can fulfil condition two, provided that the software guarantees a fixed interrupt
latency. But even when a fixed latency can not be guaranteed under all circumstances but only with a
certain variance, e.g. when another devices requires the highest interrupt priority, the clock
synchronisation still works with a degraded accuracy.

Condition three has to be fulfilled by an appropriate capacity planning. In CAN terms this has to be
expressed by the priority of the synchronisation message's identifier. Note, that this does not imply the
highest priority for the synchronisation message. Also the number of unsuccessful transmission
attempts (lost bus arbitrations or errors) is not critical to the protocol, as long as at least a maximum
time interval between two successful transmissions can be guaranteed.

The most simple clock-synchronisation protocol one can think of (figure 2): the master takes its current
time value (t1), broadcasts it (t2), all slaves receive this message (t3), and adjust their clocks
accordingly (t4), has a major drawback: the complete path from getting the masters clock value,
sending it over the network and obtaining the local clock value (t1 to t4) is time critical. The slaves
have to know the latency of this path exactly in order correct the received time value. At first, the path
must be deterministic, this means no interrupts or lost bus arbitrations must happen during its
execution. But still the timing of the path execution is hard to predict, as it depends not only on static
parameters of a certain configuration, such as the transmission speed of the network and the crystal
speed and the local software of the master and the slave nodes, but also on the bit-pattern of every
single message (because of the CAN bit-stuffing rules). In addition, the length of this path is huge
compared to the accuracy of synchronisation that should be achieved with the protocol (several
microseconds). The transmission of a time-stamp (8 bytes) with a typical bit-rate of 125 KBaud takes
about 1 millisecond and even at maximum transmission speed of 1 MBaud the critical path is still at
least a magnitude larger than the desired accuracy. Obviously it is hard to limit all possible
inaccuracies on this path and to compute the correct latency from the master to the receiver. In the
following we will describe a protocol, that relies on less stringent preconditions and a reduced critical
path. It does not need more messages or computations that the one described above.

time

slave

master

t1 t2 t3 t4
Figure 2: The simple synchronisation protocol

The main idea of a refined protocol is to use the synchrony on the CAN-bus, while minimising the
length of the time critical path. Consider the following protocol (figure 3): An arbitrary node x
broadcasts an certain indication message (t1). Each participant of the protocol receives and
recognises this message (t2) and takes a local time-stamp right after the reception (t3) (Note, that
figure 3 shows the special case, where the time needed for time-stamping the incoming message is
the same on the master and the slave node.). Then the master node sends another message
containing the masters time-stamp for the latest indication message (t4). Now each slave can compare
its local time-stamp with the one received from the master. The difference between these values
determines the amount of time for the adjust of the local clock (t5). In this protocol only the path
starting with the correct reception of the indication message to getting the time-stamp for this is time
critical (t2 to t3, denoted with thick lines). This path is a small sub-path of the one described for the
simple protocol above. The latency of the path's execution only depends on parameters local to the
slaves, such as the crystal speed and the local software. It is independent of network parameters and
the masters properties. Thus, the time for this latency (t3 - t2) has to be determined once. Now it can
be subtracted from the local time-stamps (taken at t3) in order to compute the corrected time for the
reception of the indication message (t2).

time

slave

master

t1

node x

t2 t3 t4 t5
Figure 3: The refined synchronisation protocol

This protocol still needs about twice the bandwidth of the simple protocol to achieve a comparable
accuracy, but this can be easily optimised. Our proposed protocol joins the two needed messages into
one (figure 4). The masters time-stamp for the latest synchronisation round now serves as new
indication message. The master does not take its time-stamp upon reception of an indication message
but after a successful transmission of a synchronisation message. Again, this latency only depends on
local parameters of the master node. In a CAN network the transmission success indication can be
considered as synchronous to the reception of the message on the slave nodes (t2). Now the protocol
needs the same amount of messages as the simple protocol. In both cases the messages contain the
same contents, the master's time-stamp, but in the new protocol the time-stamp belongs to the
previous message.

As shown in figure 4 the distances t3-t2 and t3'-t2' are fixed and known. Also tmax (i.e. t2' - t2) the
maximum time between two synchronisation messages is given. The slaves clock is synchronised at
t4 and t4'. As there are no assumptions made about the distance of the other points in time the interval
between t4 and t4', the time where the slave clock may drift away from the masters time, is surely
bound by 2(t2' -t2).

time

slave

master

t1' t2' t3' t4't1 t2 t3 t4
Figure 4: Two synchronisation rounds of the optimised protocol

Thus, after an initial synchronisation phase, the protocol guarantees, that

t t ts m s− < 2 max∆

where:

ts is a time-stamp taken at absolute time t from slave clock s,
tm is a time-stamp taken at absolute time t from the master clock m,
tmax is the maximum time between two valid synchronisation messages, and
∆ s is the drift of the slave clock s.

This implies that the absolute difference between two clocks of the distributed system can be made as
small as an application requires by simply increasing the rate of synchronisation messages. This is
true in an ideal system, where the time-stamp for sending and receiving the messages can be
obtained with an arbitrary accuracy. In any implemented system there are valuesδ x

sys
, that describe the

system dependant inaccuracy when determining the reception or transmission time of a message,
caused by the clock, the interrupt processing or the hardware. Thus, the possible synchrony between
two clocks is bounded by δ δs

sys
m
sys+ , which depends on the actual implementation.

t t ts m s m
sys

s
sys− < + +2 max∆ δ δ

where:

δ s
sys

is the maximum error for obtaining a time-stamp for an incoming message at slave s
and

δm
sys

is the maximum error for obtaining a time-stamp for a sent message at master m.

The protocol also synchronises slaves, that join the system with an arbitrary clock value. The speed of
their synchronisation depends only on the properties of the slaves local clock (how fast it can be
adjusted to a given time value and whether it is allowed to jump (forwards or backwards)). The
protocol can tolerate a crash and rejoin of any slave and also single message losses but not a failure
of the master clock.

The Implementation

The described synchronisation protocol has been implemented at GMD, the German National
Research Center for Computer Science. The test configuration consists of a number of Intel 8051-
microcontroller boards connected via a 1 MBaud CAN-bus. The internal timer of the microcontroller is
used as local clock. Some of the boards are running with 16 MHz crystal speed, others with 12 MHz,
resulting in a maximum clock resolution of 0,75 and 1 microseconds. The master node is connected to
a GPS satellite receiver, thus having the exact global time.

One board is used for measurement, only and

• generates events (CAN-messages), which are time-stamped by all other boards, including the
master clock, and

• collects and compares the time-stamps.

Without the synchronisation protocol the clocks drifted up to 10 microseconds per second (∆ s). So,
with synchronisation using a frequency of 20 Hz, (resulting in a tmax of 50 milliseconds, if no errors
occur and no higher priority messages are sent at the same time), t smax∆ is 500 nanoseconds.

The measured differences of the local clocks are in the range of 20 microseconds. It follows that the
main source of inaccuracy is δ δs

sys
m
sys+ . In fact, the reading of the local clocks has an non-negligible

inaccuracy. This is due the fact that

• each local clock generates a timer interrupt on overflow of a timer register. In our implementation
the overflow occurs each 10 milliseconds. If the timer interrupt and the receive interrupt for the
synchronisation message occur simultaneously, the receive interrupt is delayed. In such cases the
local clock can be read as soon as the overflow interrupt handling has finished. In our
implementation this leads to a variance of about 15 microseconds,

• read-errors influence the adjustment of the clocks. In can happen, that a well synchronised clock is
readjusted to a worse speed because of a reading error.

Both problems are extermely hardware dependent and can be avoided by the usage of better clocks.

Current Work

The existence of a synchronised clock does not imply the possibility of getting high precise time-
stamps for arbitrary events. Currently the interdependencies between bus-traffic, processor load, and
the time-stamping mechanism is observed. Question like, "How relate message priorities to accuracy
of measurement?" or "How does accuracy depend on capacity-planning?" should be answered. If e.g.
an incoming CAN-message should be time-stamped and this message has a higher priority than the
synchronisation messages, tmax becomes larger, because the synchronisation messages are lost. In
order to guarantee a worst-case tmax either additional capacity planning is needed or the protocol gets
more complicated (e.g. changes priorities) also by the cost of accuracy. Furthermore, if a
synchronisation message arrives shortly after an other arbitrary CAN-message, it is possible, that the
receive interrupt for the synchronisation message is delayed (but accepted). This must be detected by
the protocol because the delay may be up to about hundred microseconds, which is spent by the
controller to free his buffers.

[Bosch] Robert Bosch GmbH, CAN - Controller Area Network Funktionelle Beschreibung

[Gus87] Gusella and S. Zatti: "TEMPO - Time Services for the Berkley Local Network", Report
No. UCB-CSD83-163, Computer Science Division, University of California, Berkley,
CA, Dec. 1987

[Int89] INTEL 82526 Serial Communication Controller Architectural Overview, Order Number
270678-001, Jan. 1989

[Kle93] U. Kleinhans, J. Kaiser, K. Czaja: "Spearmints: Hardware Support for Performance
Measurements in Distributed Systems", IEEE Micro, Vol. 13, No. 5, October 1993, pp.
69-78

[Mil81] D.L. Mills: "DCNET Internet Clock Service", RFC-778, Defense Advanced Research
Projects Agency, Information Processing Techniques Office, April 1981

[Phi90] Philips PCA 82C200 Stand-alone CAN-Controller, Product specification, Oct. 1990

