
iCC 1995
2nd international CAN Conference

in London (United Kingdom)

Sponsored by

Motorola Semiconductor
National Semiconductor
Philips Semiconductors

Organized by

CAN in Automation (CiA)
international users and manufacturers group

Am Weichselgarten 26
D-91058 Erlangen

Phone +49-9131-69086-0
Fax +49-9131-69086-79

Email:headquarters@can-cia.de
URL: http://www.can-cia.de

page 2

Martin Embacher
VLSI Design Engineer
National Semiconductor
Embedded Technologies Division Europe

Cost efficient and customizable microcontoller
solution replaces dedicated protocol controllers in low
speed CAN network applications.
The CAN (Controller Area Network) is one of today’s most widely accepted car networking
systems. Various protocol implementations are available from different suppliers. Dedicated
protocol controllers - Full-CAN controllers - are found as system bus interfaces connected to a
main CPU or integrated into them. Yet in some applications, particularly in the low speed arena,
these devices don’t meet the price target or offer the flexibility required by the system designer.
This paper outlines the application interfaces available for the CAN protocol, gives an overview to
National Semiconductors CAN chips and it demonstrates in a practical example how these
products can help to minimise the cost of Full-CAN controller applications while increasing the
flexibility of such systems.

Introduction

CAN is designed to address the needs for a highly reliable protocol with maximum throughput for
interconnecting multiple autonomous controller modules within harsh industrial or automotive applications.
The need for such a system arose first when more and more electronic modules where introduced to the
automobiles resulting in huge amounts of wires being lain out within a car to perform interconnection
between control modules and the sensors/actuators. The first objective of the CAN system was to reduce
these kilometers of cabling and thereby reducing system cost by saving wiring effort. Additionally the
system had to have maximum reliability as basically all functions within a car could introduce a safety risk.
Next to obviously important functions as motor management and anti blocking systems also comfort
electronic functions can lead to unsafe operation of cars. Taking a faulty electronically controlled driver
seat as an example this becomes more clear. Only assume due to a fault the seat is suddenly moving
while the car runs at high speed.

Basic and Full CAN implementations

Many Semiconductor suppliers implemented various versions of a CAN user interface. Even the protocol
remains the same Basic-CAN implementations provide only the basic functionality of a CAN interface with
the capability to buffer only one message with a limited acceptance filter. Though, an additional burden is
placed on the CPU since it has to perform message filtering next to their regular task. Full CAN controllers
extend this basic features by not only implementing the protocol - moreover they implement a complete
message ‘server’ capable of automatically receiving and transmitting multiple messages on the CAN bus
without interrupting the systems main CPU if it is not necessary. Figure 1. shows the Basic-CAN interface
with the extension for Full-CAN from the programmers point of view. The hardware interface to the
processor is provided with either serial links or a paralell interface with message data (identifier, control
and data) being accesed on memory mapped address locations, so the user ‘sees’ message data and
control information.
Typical multiplex systems consists of one or more of each protocol implementations connected to each
other over a common bus. The Full-CAN is used where the CPU has to perform a magnitute of other tasks
and where communication needs to be highly independent from the rest of the software. A Basic-CAN
controller is used in areas in which the CPU has some spare performance to assist the communication
work. Full-CAN implementations with their higher level of functionality, require a larger silicon area than a
Basic CAN implementation, which translates directly into higher prices. Though, from a systems designers
point of view it might be desirable to use as many Full-CAN controllers as possible to free up the CPU for
applications tasks and provide free processing resources for future or different features. Common to both
implementations is that they can process at least one receive and one transmit message object
completely autonomous - which results in a specific number of registers being required on the CAN block
to store the information. Lastly, fully autonomous CAN modules, commonly known as SLIO (Serial Linked

page 3

I/O) devices are also build. Those devices integratea a quasi Full-CAN controller with self sufficient simple
I/O capabilities having no need for a main CPU within the module and therefor no dedicated programming
requirements. With these devices a simple CAN module can be designed by only developing the input and
output circurity required for the specific application. All I/O control is then provided via the CAN network.
Examples are National Semiconductors MM57C360 and MM57C362, which integrate a CAN cell, a
message sequencer and I/O drivers. With this functionality the device is perfectly suited for simple
modules like keypads or light clusters.

National’s COPCAN interface

With the implementation of the COPCAN on the COP8_ microcontroller family National Semiconductor
has addressed especially the high implementation costs of previous CAN modules. By reducing the
amount of registers required to implement the CAN protocol. The driving factors was cost on the one side
and the idea that not all applications require the high speed feature all CAN implementation known so far
offered. To reduce cost the object buffer for both receive and transmit was reduced from 10 bytes (2
identifier + 8 data bytes) to 4 bytes (2 identifier + 2 data bytes). The ‘reminder’ of the CAN interface, error
management, BTL was not changed in order to archieve full compatibility. With the reduction of registers
the interface is no longer capable to process messages with more than two bytes of data independently,
data needs to be provided by the main processor in time. This register reduction however has no influence
to the interface performance in low speed (< 125kbit/s) applications as the processor has enough time to
store/provide the data when required. Interrupt flags indicate to the CPU when the processor needs to
provide data to the COPCAN interface. This results in a ratio between the maximum possible bus speed
and the time the processor needs to save and provide data which will now be explained in more detail. On
the one side the COP8 microcontroller core features an instruction cycle time of 1 us = 1 tC with an
external clock of 10 MHz. Most instructions take one tC to execute. On the other side with a bus speed of
125 kBit/s, typical for low speed applications, one byte time on the CAN bus takes a minimum of: 8 (bit) *
(1 / 125 kHz) (us) = 64 us, without the possible stuff bits. With a given interrupt latency time of 20 tC
maximum (including transfer of control instructions) this leaves 44 us to store the receive data or write
new data into the transmit register. Figure 2 shows the timing of a message reception with four data bytes.
It can be seen from the picture that adding data bytes to the frame would neither introduce a critical path
nor decrease the processors free time.

Figure 1: CAN programming model

page 4

In this example the CPU’s usage to store the received data is given as apx. 20 tC. The critical path is to
read the first receive buffer byte after the receive buffer full flag (RBF) is set and before it gets overwritten
by new incoming data. During the free processor time other application tasks can be exceuted. Basically
the same example is valid for a transmitter. The main difference is that transmitting data is mostly
synchronus to the programms exceution where receiving is asynchronus. Thus the transmission of data is
not time critical. Also using a high speed link (>125kBit/s) is possible for applications which don´t need to
receive more than two bytes of data.

Implementing a Full-CAN processor with an COP8 microcontroller

National Semiconductors COP8_ microcontroller core contains beside the pure CPU a serial
synchronous microwire interface and a processor independent Timer. Additional functional blocks like the
COPCAN interface, Timers, USART, A/D convertors and various sizes of ROM and RAM can be added
with the Configurable Controller Methodology (CCM). Today several standard parts are offered of which
two feature the COPCAN interface. The COP884BC and the COP888EB. All COP8_ microcontroller
family members are also available as one time programmable (OTP) devices. The following section shows
how a protocol processor, providing a customizable Full-CAN interface, can be integrated with the COP8
 family. A block diagram of the setup with the microcontroller and the main CPU is shown in Figure 2.
Additional customized options like time stamp for received messages or timed automatic transmission of

a b
c

byte 2 byte 3 byte 4 CRCbyte 1controlarbitration

a b
c

a - interrupt latency
b - data processing
c - return from interrupt

RBF flag RBF flag

free processor time (fpt)

EOFSOF

fpt fpt

critical path

Figure 8: Message Processing with the COPCAN interface

COP888
core

ROM

COP8™ uC

RAM
(object

memory)

I/O

COPCAN
interface

uW
interface

power
save

modes

clock
circuit

additional
functions

main
CPU or uC

(option) system I/O

4

multiplex
bus

Full-CAN
application
enviromet

other
function
blocks

specific
functions

Figure 2: COP8 based Full-CAN interface

page 5

data can be integrated by simply altering the software. In addition several data processing tasks, i.e.
automatic keyboard scanning can be integrated - thus reducing the overhead on the main CPU and
freeing up processing resources. Another advantage of having a second CPU in the system is automatic
diagnostics either with a specific protocol or with the watchdog circuit integrated on the COP8_ . Finally,
the power save features of the COP8_ microcontrollers help to minimize power consumption in the
application by gradually switching off modules - including the main CPU. The multi-input wake-up feature
allows multiple sources to return from the save mode to the active mode. The interface to the main CPU
can be chosen to be provided with standard I/O ports of the microcontroller, the microwire interface or if
very high speed communication is required with a newly developed high speed serial link.
In this example, however, the microwire interface is used. Communication is done with three wires and
one handshake signal. The data from the main CPU to the microcontroller is transmitted in packets of
eight bit with a customizable protocol. The microwire interface can be programmed to generate an
interrupt every eight clocks applied to the SK. Thus indicating the master CPU wants to exchange some
commands or data with the microcontroller. After the COP8_ reads out the data from the microwire
register it returns an acknowledge signal to the main processor, by toggling the handshake line. Figure 9
shows a block diagram of the COP8_ microcontroller linked with the main CPU. The instructions stored in
the COP8_ ROM firstly exceute the protocol between the master and the COP8_ , secondly they process
CAN messages and thirdly they filter out unwanted data.
The software of the application is divided into several tasks which allow easy customization. A main loop
contiousely polls various flags. These are set by the microcontrollers hardware, like the system timer, the
muti-sourced external interrupt/wake-up or by the interrupt handlers e.g. of the microwire interface or CAN
interface. The mikrowire interrupt indicates a main CPU communication request. The CAN interrupts are
receive, transmit and error. All of them are leading to a seperate interrupt vector within the COP8_
memory. Upon detecting one flag to be set the program branches to the certain subroutine. This program
structure is choosen to ensure fast response times for the time critical communication parts CAN and
mikrowire. A flowchart of the main routine is found in Figure 10 together with the CAN receive interrupt
handler.
The communication request flag is set as soon a the mikrowire received the first byte, e.g. indicating the

command for the COP8_ , this data was read out the uW shift register and the handshake signal set, to
indicate the main CPU the possibility to read or write the next data byte. Within the communication
subroutine these data bytes are exchanged with the main processor. The system time can be generated

program
initialisation

com.
request ?

system
time ?

execute
timed
events

communicate
with master

CPU

store/
transmit
message

object

message
object

Y

N

Y

N

Y

N

main loop

optional
task ?

Y

N

receive data
bytes

object
 valid ?

save to object
memory

dischard
data

add time
stamp

end
task

frame
done ?

N

Y

N

Y

interrupt driven
CAN receive routine

(option)
execute

optional task

Figure 3. Main program and CAN receive interrupt handler

page 6

by the idle timer’s pending flag. This flag is set every 4096 tC on the COP884BC and it can be programed
to be set every 4k, 8k, 16k or 32k tC on the COP888EB. Secondly, the system time can be generated with
a free programmable 16 bit autoreload timer T1, for increased flexibility. Timed events, like automatic
transmission of a CAN messgage or a software real time clock are then executed. CAN message objects
are handled by a subroutine as described later. Finally, flags for optional tasks can be included and polled
within the main loop in order to comprise additional features.
The CAN receive interrupt routine stores received data in receive buffers located within the RAM (please
refer to Figure 8.). For this data storage special memory locations - base page RAM - are used as indirect
addressing operations in this area are executed faster than if used on the remaining RAM area. After a
complete message object is received and no errors occured a flag is set. Optionally the systems time can
be stored as well to allow verification of the creation time for a specific message in real time systems.
Than the message object is filtered and stored into it’s final location within the message object handlers.
One receive message object handler is shown in Figure 11 and described below. CAN transmit interrupts
work similar to to the receive routine on a different interrupt vector. Additions to the transmit schedule
routine - which are not offered with standard Full-CAN chips - can be done as well. For example a transmit
object may be verified to be sent within a specific time or within a certain number of retrys if they’re likley
to loose arbitration on a highly frequented bus. Another example is the automatic transmission of the
systems (real) time in order to have a common time base over the network.

The CAN receive object handler is called after a CAN message was satisfactory received. One object
handler verifies the received message object with its specific acceptance filter and stores the data if the
messages identifier matches. Else the next receive object handler is called until all possible receive
objects are verified. A flag may be set to indicate to the main CPU afterwards the reception of a message.
If new data for one object is received a flag is set to indicate the data overwrite. The number of possible
message objects to be stored is only limited by the processors RAM.

Software example

After theoretically outlining the implementation of the protocol processors software, this section provides
an example in COP8 assembly language to instanciate one receive object handler. The program is written
in the form of a macro which allows multiple message handlers to be used within one program by simply
calling the macro several times. The program uses 10 or 12 bytes of RAM for every message object and
two global status bytes. One to indicate the reception of a message (rx_status) and one to indicate the
overrun condition if new data is received before it was transmitted to the main controller (rx_overwrite).
The parameters to the macro are the number of the message object and a pointer to the message object
memory. The program is executed as shown in figure 4. After initializing some pointers (lines 004 and
005) the received messages identifier is compared with the identifier of the current object (lines 006 to
013). As the identifier now matches it is checked if the objects data was read by the main processor. If the

object
received

unread
old object?

save to object
memory

set overwrite
flag

end task
(goto next

object
handler)

filter
acceptance

Y

N

don’t pass

pass

CAN receive message
object handler

Figure 4: CAN receive object handler

page 7

data was not read the overrun flag is set (lines 014 and 015). Finally, the received data is copied into the
objects memory (line 016 to 033).

(001) .macro rx_object, obj_number, msg_obj
(002) .local ; local variables used
(003) $message_filter: ;
(004) ld b, #msg_obj ; point to msg_obj
(005) ld x, #rx_buffer ; point to receive buffer
(006) ld a, [x+] ; get receive identifier
(007) ifne a, [b] ; compare with object id
(008) jp $end_msg ; if fail - then end
(009) $idlc_test: ;
(010) ld a, [b+] ; increment rx buff pointer
(011) ld a, [x+] ; get remaining receive id
(012) ifne a, [b] ; compare with object id
(013) jp $end_msg ; if fail - then end
(014) ifbit obj_number, rx_status ; data received before ?
(015) sbit obj_number, rx_overwite ; then indicate
(016) andsz a, #0x0f ; mask data length code
(017) jp $copy_loop ; and copy data
(018) jp $end_obj ; if dlc == 0 then end
(019) x a, byte_count ; save dlc to byte counter
(020) $copy_loop: ;
(021) ld a, [x+] ; read bytes
(022) x a, [b+] ; and save to memory
(023) drsz byte_count ; decrement counter
(024) jp $copy_loop ; ..until done
(025) $end_obj: ;
(026) ld b, #msg_time ; point to time stamp
(027) ld a, system_time_high ; get time high byte
(028) x a, [b+] ; and save
(029) ld a, system_time_low ; get time low byte
(030) x a, [b] ; and save
(031) sbit obj_number, rx_status ; indicate receive
(032) $end_msg: ; end
(033) .endm ;

This macro uses 41 bytes of ROM and takes a maximum of 19 tC until the acceptance of one message is
filtered.

Conclusion

This paper explained the different programming models of CAN chips. It showed how a Full-CAN
controller to move and shape the information contained within the messages can be implemented at low
cost. Finally, the flexibility of a microcontroller solution with customizable software compared to a fixed
chip solution was outlined.

