
iCC 1995
2nd international CAN Conference

in London (United Kingdom)

Sponsored by

Motorola Semiconductor
National Semiconductor
Philips Semiconductors

Organized by

CAN in Automation (CiA)
international users and manufacturers group

Am Weichselgarten 26
D-91058 Erlangen

Phone +49-9131-69086-0
Fax +49-9131-69086-79

Email:headquarters@can-cia.de
URL: http://www.can-cia.de

2

DeviceNet Transports and Data Production Triggers:

Authors: Jeff Hanneman, Pat Maloney, Dan Noonen, Stuart Siegel

Allen-Bradley 1 Allen-Bradley Dr. Mayfield Heights, Ohio 44124

(216) 646-5000

Abstract:

DeviceNet connections can be configured with a multitude of behaviors based
upon the transport class types and data production triggers desired by the end
communicating applications. The DeviceNet communication model provides a
variety of connection object transport class types and data production triggers.
Connection objects can be configured to produce only or consume only. They can
be configured to both produce and consume and to do so in a fashion that is either
synchronous or asynchronous with the end application to which they are linked.
DeviceNet connections are capable of producing their data based upon a
connection timer (cyclically), upon a change-of-state of the I/O or at the
application’s discretion. With this flexibility an end device may set up a myriad of
communication links that are useful in architectures including Master/Slave, Peer-
to-Peer and Distributed Control. This paper will present the communications links
that can be established using DeviceNet connection objects and give examples as
to how these communications links can be applied in the various network
architectures.

Introduction:

DeviceNet models individual devices as a collection of objects. An object is an abstract representation of a
particular functionality or behavior within a device. Some of a device’s objects embody that device’s
application functionality (Application Objects) while others are responsible for handling communications
into and out of the device (Connection Objects). This paper will focus on Connection Objects and how
they are used to transport data in a variety of network architectures.

The DeviceNet protocol employs a Client/Server connection based scheme to facilitate the movement of
data between end applications. A Client Connection object and one or more Server Connection
Object(s) are associated with every DeviceNet connection. A Client Connection Object originates data
productions and a Server Connection Object consumes and reacts to that data. The Connection Objects
associated with a DeviceNet connection are flexible and can be configured with a variety of behaviors. Two
important aspects of a Connection Object’s behavior are:

• The connection’s ability to produce and/or consume data in a fashion that is either
synchronous or asynchronous with the end application -and-

• The connection’s ability to process a variety of events that trigger the production of data

The first Connection Object behavioral aspect is governed by the connection’s Transport Class attribute.
The Transport Class attribute indicates whether the connection will produce data, consume data or both.
In addition, if a connection is to consume first and then produce (server device), this attribute will indicate
whether or not the application object will be required to process the consumed data before triggering a
data production. The second Connection Object behavioral aspect is governed by the connection’s
Production Trigger attribute. This attribute indicates how a client device connection initiates data

3

production. A client device may produce its data based on a cyclic timer, a change of state of the data or
an application object signal.

By manipulating these two attributes a connection can be created that exhibits the behavior required by
the device’s application and the system architecture in which the device must operate. Connections can
be created that provide for the movement of data in a point-to-point fashion (from 1 client to 1 server) or in a
multicast fashion (from 1 client to 2 or more servers). Also, the data productions of a client device can be
either acknowledged or unacknowledged. With this flexibility, connections can be created that allow
devices to operate in a Master/Slave, a Peer-to-Peer or a Highly Distributed architecture.

Connection Types:

There are four basic types of connections that can be established by configuring DeviceNet Connection
Objects. These connections are:

1. Point-to-Point without acknowledgment
2. Point-to-Point with acknowledgment (either server application synchronous or server application

asynchronous)
3. Multicast without acknowledgment
4. Multicast with acknowledgment (either server application synchronous or server application

asynchronous)

Figure 1 shows a typical Point-to-Point connection without acknowledgment. Note that the client device
contains a producing only Connection Object (Client Transport Class 0) and the server device contains
a consuming only Connection Object (Server Transport Class 0). The data production trigger utilized
by the client device can be any one of the three mentioned above. This type of connection would be well
suited for use in either a Peer-to-Peer or a Distributed architecture. The client device could represent a
sensor and the server device could represent a controller or a controller/actuator pair.

Application
Object

Client Transport
Class 0 Connection

Client Device

Application
Object

Server Transport
Class 0 Connection

Server Device

Link
Producer
Object

Link
Consumer
Object

Figure 1. Point-to-Point Connection Without Acknowledgment

Figure 2 shows a typical Point-to-Point connection with acknowledgment. The client device contains a
Client Transport Class 2 or 3 Connection Object that both produces and consumes. It is important to
note that since the client end of a connection always initiates a data production, there is no distinction
between a Client Transport Class 2 Connection Object and a Client Transport Class 3 Connection
Object. In other words, the client application object(s) will always be synchronized with the client
Connection Object.

It should also be noted that the server device in figure 2 contains a Server Transport Class 2
Connection Object that both consumes and produces and it does so in a fashion that is asynchronous of
the Application Object. This is represented by the dashed line that connects the Link Consumer Object
directly to the Link Producer Object. As a Server Transport Class 2 Connection Object, the act of
consuming immediately triggers a response. The response may optionally contain data, however, the data
is provided by the Application Object asynchronous of the Connection Object’s operation. If, as in figure

4

3, the server device Connection Object had been configured as a Server Transport Class 3 Connection
Object, the Application Object would have received the consumed data before triggering the Connection
Object to produce a response (synchronous operation). Synchronous operation provides the Application
Object with the opportunity to validate and/or process the consumed data before triggering a data
production. These two server transport types differ in the types of acknowledgment that each transport
can generate. A Server Transport Class 2 Connection Object produces acknowledgments generated by
the Connection Object (OSI Model: Transport Layer acknowledgment) while a Server Transport 3
Connection Object produces acknowledgments generated by the Application Object (OSI Model:
Application Layer acknowledgment).

Again the data production trigger utilized by the client device can be the expiration of a cyclic timer, a
change of state of the data, or an application object specific trigger. This type of connection would be well
suited for use in any of the previously mentioned architectures. In a Master/Slave architecture the client
device would represent the master and the server device could represent a sensor or an actuator. In Peer-
to-Peer or Distributed architectures the connection could be used as shown above in figure 1 with the
acknowledgment added to insure data integrity.

Application
Object

Client Transport
Class 2/3 Connection

Client Device

Application
Object

Server Transport
Class 2 Connection

Server Device
Link
Producer
Object

Link
Consumer
Object

Link
Consumer
Object

Link
Producer
Object

Optional
Data

Figure 2. Acknowledged Point-to-Point Connection (Server Application Asynchronous)

Application
Object

Client Transport
Class 2/3 Connection

Client Device

Application
Object

Server Transport
Class 3 Connection

Server Device
Link
Producer
Object

Link
Consumer
Object

Link
Consumer
Object

Link
Producer
Object

Figure 3. Acknowledged Point-to-Point Connection (Server Application Synchronous)

Figure 4 shows a Mulitcast connection without acknowledgment. The client device contains a producing
only Client Transport Class 0 Connection Object and the server devices each contain a consuming only
Server Transport Class 0 Connection Object. This is similar to the Point-to-Point scenario shown in figure
1 and, in fact, the individual Connection Objects are configured identically. Again the data production
trigger utilized by the client device can be any one of the three previously mentioned triggers. This type of
connection would be well suited for use in Peer-to-Peer or Distributed architectures. The client device

5

could be producing a sensor input or a diagnostic/alarm signal and the n server devices could be actuating
outputs, executing control algorithms or responding to system alarms.

Application
Object

Link
Producer
Object

 Client Transport
Class 0 Connection

Client Device

Link
Consumer
Object

 Server Transport
Class 0 Connection

Server Device 1

Application
Object

Link
Consumer
Object

 Server Transport
Class 0 Connection

Server Device n

Application
Object

Figure 4. Unacknowledged Multicast Connection

Figure 5 shows a Multicast connection with acknowledgment. The client device contains a single Client
Transport Class 0 Connection Object responsible for data production and n Server Transport Class 0
Connection Objects responsible for the consumption of acknowledgments from the n server devices. It is
the Application Object, however, that is ultimately responsible for verifying the reception of all
acknowledgments and, if necessary, executing error recovery logic. The n server devices each contain
Connection Objects that interact with their respective Application Objects in a synchronous fashion
(Server Transport Class 3). Once again the data production trigger utilized by the client device can be any
one of the three previously mentioned production triggers. This type of connection would be well suited
for use in any of the stated architectures. In a Master/Slave architecture the client device would represent
the master and the server devices would represent multiple sensors or actuators (slaves). This connection
type is presently defined in the DeviceNet specification for use as the master’s Bit-Strobed I/O connection.
In Peer-to-Peer or Distributed architectures an acknowledged multicast connection could be used by any
client device requiring confirmed transmission of its data to multiple devices.

6

Application
Object

Link
Producer
Object

 Client Transport
Class 0 Connection

Client Device

Link
Consumer
Object

 Server Transport
Class 2 Connection

Server Device 1

Application
Object

Link
Producer
Object

Link
Consumer
Object

 Server Transport
Class 3 Connection

Server Device n

Application
Object

Link
Producer
Object

 Server Transport
Class 0 Connections

Link
Consumer
Object

Link
Consumer
Object

Optional
Data

Optional
Data

Figure 5. Acknowledged Multicast Connection

DeviceNet Connections and Control Architectures:

DeviceNet makes no assumptions about the control architectures in which it is to be applied. The
protocol’s connection based scheme is equally applicable regardless of whether your control architecture
is Master/Slave, Peer-to-Peer or Highly Distributed. In this section examples will be presented showing
the application of the DeviceNet protocol in each of these control architectures.

Master/Slave:

The Master/Slave architecture is possibly the best understood of all the control architectures. In its
simplest form a central “controller” device performs data acquisition from field sensors, executes control
algorithms based on those sensor inputs and then updates the output values of field actuators. An
example of this is shown in figure 6. Figure 6 shows a master device performing an I/O gathering and
distributing function along with the execution of a master application. All of a master’s I/O operations can
be supported by two connection types: Multicast with acknowledge and Point-to-Point with acknowledge.
The Master/Slave portion of the DeviceNet specification refers to these two connection types as the Bit-
Strobed I/O Connection and the Polled I/O Connection respectively.

Referring to figure 6 we see that the master device Application Object triggers the production of a Bit-
Strobe request message across an acknowledged multicast connection. That message is consumed
by all devices on the network that are configured to do so (devices 1 and 2 in our example). Those devices
then respond with input, status or a simple acknowledge. Note that the Bit-Strobed devices in our example
have been shown as inputs. The Bit-Strobed devices could just as easily have been shown as outputs as
well.

7

Master Device Slave Devices

Client
Class 0

Server
Class 0

Server
Class 0

Server
Class 2

Server
Class 3

Server
Class 2

Server
Class 3

Server
Class 2

Discrete
Input
Object

Analog
Input
Object

Discrete
Output
Object

Analog
Output
Object

Analog
Output
Object

Client
Class 2

Client
Class 2

Client
Class 2

Bit-Strobe Request

Device 1

Device 2

Device 3

Device 4

Device 5Device 0

Device 1 Input
Data

Device 2 Input
Data

Device 3 Output
Data

Device 3 Ack

Device 4 Output
Data

Device 4 Ack w/data

Device 5 Output
Data

Device 5 Ack

M A
A P
S P
T L
E I
R C
 A
 T
 I
 O
 N

Bit-Strobe Request

Poll 3 Request

Poll 4 Request

Poll 5 Request

Device 3 Ack

Device 4 Ack w/data

Device 5 Ack

Device 1 Input
Data

Device 2 Input
Data

Figure 6. DeviceNet Connections in a Master/Slave Architecture

The remaining devices in the example (devices 3,4 and 5) are communicated to via acknowledged point-
to-point connections. The master device Application Object triggers the production of a poll request
message containing output data for each of the devices. The devices respond with an acknowledgment
and optional data. The polled devices in our example have been shown as outputs but they could have
been inputs as well. If they had been inputs, the poll request message could have acted as a master
generated trigger causing the slaves to produce their input values.

Peer-to-Peer:

The use of a Peer-to-Peer architecture provides a greater degree of design flexibility to the control system
engineer as compared to the Master/Slave architecture. For example, main control elements throughout
the system can share I/O and configuration data. This allows for a clean segmentation of the control
solution while, at the same time, allowing for the use of smaller, less costly controllers. Also, the traditional
roles of master and slave become blurred as I/O devices gain the capability of reporting their data at their
own discretion. I/O devices no longer need to be triggered to report by a master. This provides for a more
efficient use of the network’s bandwidth.

An example of a Peer-to-Peer network is shown in figure 7. In this example a tool device shares the same
network with two small Master/Slave control schemes. The tool device provides the control system
engineer with a user interface to configure the master controllers. The master devices are each
responsible for gathering and distributing I/O data from/to their respective slaves and controlling their own
subprocesses. This example shows the Device 1 master sharing data with the Device 3 master via an
acknowledged point-to-point connection. The shared data consumed by the Device 3 master allows it to
make control decisions in its own subprocess based on the state of the Device 1 master’s subprocess.

8

This capability can be exploited in the control of batch processes. Finally, an important point to be noted in
this example is that device 6 is a client device and reports input data to master device 3 based upon its own
internal trigger (I/O data change-of-state, cyclic timer expiration, etc.). This capability results in fewer
packets traversing the bus for a given amount of I/O when compared to a similar master/slave architecture.

It is interesting to note that from a DeviceNet communications modeling point of view many of the
connections utilized in the peer-to-peer architecture are identical to those found in the master/slave
architecture.

Server
Class 2

App
Object

Master Application

Client
Class 3

Client
Class 3

Client
Class 3

Server
Class 3

Master Application

Client
Class 3

Server
Class 0

Server
Class 3

Server
Class 3

Server
Class 2

App
Object

Client
Class 0

App
Object

Server
Class 2

App
Object

Tool Device

Client
Class 3

Client
Class 3

Device 1

Device 2

Device 3

Device 4 Device 5 Device 6 Device 7

Figure 7. DeviceNet Connections in a Peer-to-Peer Architecture

Highly Distributed Control:

Highly Distributed Control has been talked about for the past couple of decades but, until recently, cost
effective technology with which one could implement a highly distributed control scheme simply didn’t
exist. The emergence of highly capable, low cost networking technologies coupled with “smarter” and
lower cost I/O products puts highly distributed architectures within reach. The distribution of I/O in a
distributed control architecture provides for a more efficient use of bus bandwidth and shorter end to end
delays for I/O data thus allowing for tighter closed loop control. Also, the distribution of control reduces or
even eliminates the need for expensive dedicated controllers.

An example of a Highly Distributed Control architecture is shown in figure 8. This example shows the
application of Highly Distributed Control to a conveyor line. In this example a presence sensing device
detects the presence of a box as it moves down the conveyor line. The detection of a box triggers the
presence sensor’s client connection to send a “Box Present” message to the bar code scanner via an
acknowledged point-to-point connection. The consumption of that message causes the bar code
scanner to scan the box which, in turn, triggers the bar code scanner’s client connection to trigger the
production of a “Box_Type(A|B) Detected” message. That message is communicated to the linear
actuator via another acknowledged point-to-point connection. Finally, the linear actuator routes the box
to one of two successive conveyor lines based upon the consumed box type data. Note that on both of
the acknowledged point-to-point connections the client Connection Objects send an indication back to
their respective Application Objects indicating that the acknowledge had been received. If an
acknowledge had not been received within some application specific time, the client Connection Objects
could have been triggered to produce again.

9

Presence
Sensing
Object

Server
Class 2

Server
Class 3

Client
Class 2

Bar Code
Scanner
Object

Linear
Actuator
Object

Device 1

Device 2

Device 3

Client
Class 3

Ack

Ack

Server
Class 3

Server
Class 3

Server
Class 3

Client
Class 3

Client
Class 3

Client
Class 3

Man-Machine
Interface

Server
Class 0

Server
Class 0

Server
Class 0

Client
Class 0

Box Present
Indication

Bar Code Scan
Display

Linear Actuator
Position Indicate

System wide
Logic

Box_Type(A|B)
Detected

Box Present

Figure 8. DeviceNet Connections in a Distributed Architecture (Configuration Time)

A Man-Machine Interface (MMI) is added to the system to provide the control system engineer with a
“window” into the distributed process. System wide control algorithms are configured/entered by the
control engineer at the MMI and then the MMI is responsible for “breaking down” the control algorithms
and distributing the algorithm fragments to the appropriate devices throughout the system. In our simple
conveyor line example the MMI is responsible for creating and configuring the necessary Connection
Objects to route the I/O signals throughout the system. The MMI is also responsible for configuring the
distributed control elements (i.e. Presence Sensing Object, Bar Code Scanner Object and Linear Actuator
Object).

The acknowledged point-to-point connections between the I/O devices are used to route runtime I/O data
from device to device. Notice, however, the Client Class 3 Connection Objects within the MMI and Server
Class 3 Connection Objects within each of the devices. These Connection Objects are the client and
server end points respectively of acknowledged point-to-point connections between the MMI and the I/O
devices. These connections provide the MMI with a configuration channel into each of the I/O devices.
The MMI will use these connections to create and configure device Connection Objects used to transfer
runtime I/O data as well as configure device Application Object attributes. These configuration channel
connections are needed only at configuration time and may be deleted after use. The DeviceNet
Connection Object Class supports service primitives that provide for the dynamic creation and deletion of
individual Connection Objects. Thus, Connection Objects (and valuable device resources) need only be
in use when they are needed. Figure 9 shows this same conveyor line control example after all system
configuration functions have been performed.

10

Presence
Sensing
Object

Server
Class 2

Server
Class 3

Client
Class 2

Bar Code
Scanner
Object

Linear
Actuator
Object

Device 1

Device 2

Device 3

Client
Class 3

Ack

Ack

Server
Class 3

Server
Class 3

Man-Machine
Interface

Server
Class 0

Server
Class 0

Server
Class 0

Client
Class 0

Box Present
Indication

Bar Code Scan
Display

Linear Actuator
Position Indicate

Box_Type(A|B)
Detected

Box Present

Figure 9. DeviceNet Connections in a Distributed Architecture (Run Time)

Finally, take note of the Server Class 0 Connection Objects contained within the MMI. These Connection
Objects serve to monitor the I/O traffic on the bus and route the individual I/O data points to display panels
or some other supervisory application object. These Connection Objects are used to monitor bus traffic
only and thus consume no bus bandwidth!

Here again it should be noted that from a communications modeling point of view the connections utilized
in the highly distributed architecture are identical to the connections utilized in both the peer-to-peer and
master/slave architectures.

Hybrid Networks:

By examining each of the previous architecture examples we see that the communication model is virtually
identical for all architectures. In fact, the connection objects contained within the end devices are all
members of the same Connection Object Class. A device’s Connection Object(s) is/are simply
configured to consume data, produce data or consume and produce data. Those connection objects
have absolutely no idea which of the three architectures they are operating within. Given these facts it
should be no surprise that all three of these architectures can exist on the same network at the same time.

Conclusion:

As we have seen DeviceNet Connection Objects can be configured to produce data, consume data or
both produce and consume data. Also, Connection Objects capable of data production can be triggered
to do so by any one of the following three methods:

11

• Cyclic timer expiration
• A change of state of the communicated data
• Application specific trigger

In addition we have seen that these connection objects can be used to create the following four basic
connection types:

• Unacknowledged Point-to-Point
• Acknowledged Point-to-Point
• Unacknowledged Multicast
• Acknowledged Multicast

Through the use of these connection types, data can be communicated throughout any one of the
discussed control system architectures. Finally we saw that the system communication model was
independent of the system architecture in which it was employed. DeviceNet’s architecture
independence provides the control system engineer with the flexibility to design control schemes using
any system architecture or, if desired, a hybrid of two or more system architectures. While designing hybrid
architectures may not become common, the ability to do so should prove to be a comfort to those who
must provide control solutions for today while still maintaining a migration path to tomorrow.

