
Can controller implementing features for reliable
communication1

J.C. Campelo, A. Rubio, F. Rodríguez, J.J. Serrano

Dept. of Computer Engineering, Technical University of Valencia (SPAIN)
{jcampelo, alicia, prodrig, jserrano}@disca.upv.es

CAN networks are becoming one of the most used industrial local area network in
many applications. Philips Semiconductors has been one of the manufacturers
devoted to offer stand alone CAN controllers to make possible the connection to this
network. The PCA82C200 has been used in multitude of CAN based microcontroller
systems. At present, this circuit has been replaced by the SJA1000. This new
controller offers new interesting features. An analysis of this new CAN controller, and
its comparison with its antecedent is done in this paper. We use different methods, as
simulation languages and queuing networks, in order to obtain the main performance
parameters of these controllers.

1This work is supported by the Spanish Comisión Interministerial de Ciencia y Tecnología under project CICYT-
TAP96-1090-C04-01

Introduction

CAN (Controller area network) networks
are becoming one of the most used
industrial local area network in many
applications. Beyond its original use, in
automotive environments, this network
can be found nowadays in many industrial
applications, as the base of distributed
industrial control systems, in agricultural
or medical systems, and many other
examples that need an industrial local
area network (fieldbus).

From the origins of this network, Philips
Semiconductors has been one of the
manufacturers devoted to offer integrated
circuits to make possible the connection to
this network. This manufacturer has
developed, in addition to different
microcontrollers with on-chip CAN
controllers specific circuits, known as
stand alone CAN controllers, in order to
provide a simple interconnection to CAN
for different microcontrollers.

The PCA82C200 ([6]) has been used in a
plethora of CAN based microcontroller
systems. It is easily connected to both
Intel-like and Motorola-like
microcontrollers. At present, this circuit
has been substituted by the SJA1000

([1]). This new CAN controller offers new
interesting features.

An analysis of this new CAN controller,
and its comparison with its antecedent, is
done in this paper. What does this circuit
provide? Which is its effect on the system
performance? Has some features that
makes it more suitable in real-time
systems? These questions are going to be
answered in this article.

In order to do a performance analysis we
can use different techniques. We can
obtain the results using a real system
(prototype) using these controllers. So,
with the aid of a monitorization system, we
can measure different factors: bus
utilization, throughput, response time, etc.
and do the comparison between these
controllers. The drawback of this
technique resides in the development of
the monitorization system. To avoid the
use of prototypes and the development of
measurement systems we can do the
study using simulation and analytic
methods. Simulation languages and
queuing network theory are valid methods
in order to compare and to analyse
systems.

This paper is organized as follows: after
the introduction an analysis of the most
important characteristics of both devices is
carried out. In the third section simulation
models accomplished are commented
and, in the last sections the obtained
results and conclusions are presented.

PCA82C200 and SJA1000 characteristics

In this section the characteristics that
differentiate both circuits are going to be
presented. As cited previously, the last
one is the successor that Philips
Semiconductors offers to its widely used
PCA82C200. Since the objective of this
paper is to analyze how the new
improvements introduced in the SJA1000
affect the system performance only those
with have a clear effect in the performance
are emphasized.

PCA82C200, due to its low cost and its
easy connection with different
microcontrollers has become one of the
most used CAN controllers in
microcontroller based systems.
Nevertheless, the continuous
development of both microcontrollers and
the improvements emerged to the original
CAN standard, has made necessary its
replacement. Specifically, the 82C200 is
only prepared for basic CAN and it is CAN
2.0B passive. Furthermore, the
development of microcontrollers, the
constant increase in its work frequency
implies that PCA82C200 can not be
connected due to its read/write access
time to the last microcontrollers. For
example, PCA82C200 runs without
problems with the Intel 8031 family with
frequencies up to 16 Mhz. If we want to
use new, faster microcontrollers, only
those that permit to insert wait states (and
therefore loosing performance) can be
used.

This last characteristic is one of the
improvements of the SJA1000: access
time, reading and writing, setup, hold and
pulse width of control signals are now
much shorter. It makes possible its direct
connection to the last microcontrollers of
several manufacturers (think about Intel

251 family, Philips 8051XA, Siemens 166
family, etc.)

Both devices are exactly equal with
respect to their package, making possible
the direct replacement of the PCA82C200
with the SJA1000. Furthermore, to allow
its use on already designed systems
based on the PCA82C200 functionality,
SJA1000 provides a compatible operation
mode with the previous one.

Reception buffer

One of the improvements provided by the
SJA1000 is an enhanced reception buffer.
While the PCA82C200 only has a two
message reception buffers, in the
SJA1000 this capacity has been increased
until 64 bytes. Depending on the length
and type of the message (extended or
basic CAN) it will be able to store several
messages (more than two). This feature,
which does not influence on the
application developed, is claimed to be an
important advantage due to the smaller
probability of overrun errors. Later, in this
paper, the number of lost messages due
to overrun errors is going to be studied for
each of these devices.

PeliCAN mode

In addition to the compatible mode,
SJA1000 offers a new mode known as
PeliCAN. Main new features are ([1]):

• Reception and transmission of
standard and extended frame format
messages
• Receive FIFO (64 bytes) (also in
compatible mode)
• Single/Dual acceptance filter with
mask and code register for standard
and extended frame.
• Error counters with read/write
access
• Programmable error warning limit
• Last error code register
• Error interrupt for each CAN Bus
error
• Arbitration lost interrupt with detailed
bit position
• Single-shot transmission (no re-
transmission on error or arbitration lost)

• Listen only mode (monitoring of the
CAN bus, no acknowledge, no error
flags)
• Hot plugging supported
(disturbance-free software driven bit
rate detection)
• Disable CLK OUT by hardware

From these characteristics, the enhanced
reception buffer and the new single-shot
are the improvements that can affect the
system performance. So, with single-shot
mode, if a message has not been able to
transmit correctly due to:

• arbitration loose
• bus errors[2]:

• bit errors
• bit stuff errors
• CRC errors
• form errors
• acknowledge errors
• overload errors
• overload frame form errors
• inconsistent overload errors
• multiple consecutive errors
• multiple successive error

it is not re-transmitted. In this case an
interrupt is generated and the buffer is
released.

If single shot mode does not exist (e.g.
PCA82C200), the message that is not
correctly transmitted is automatically re-
transmitted. This implies that, depending
on the message priority, it will compete in
the next arbitration phase with the rest of
the messages of the other nodes and it
will delay other messages in the same
node. In real-time systems this fact implies
that worst case messages response time
is unbounded.

With single shot mode, the message that
can not correctly arrive is lost (in many
applications it is “better not to arrive than
to arrive late” since the passage of time
may invalidate the information of the
message [10]) (of course, application level
can re-transmit that message if needed).
We are going to assume in the rest of the
paper that a message that suffers from
some error is not re-transmitted. In this

way, the response time for the other
messages will not be altered due to an
error in one of them. (We are analysing
only the circuit, not other software levels
such as the application level of the
communication that can alter this
operation)

Simulation models

In order to compare the different
behaviors of both CAN controllers, the
transmission and the reception will be
studied separately.

Transmission

From the transmission point of view, the
features to evaluate will be:

• The response time of the messages:

the time since the message is ready to
access the bus until it reaches to its
destination. The aim of this comparison
is to check whether this time remains
constant or if it increases as the
number of errors increase. So, the
response time of each of the messages
proposed in the SAE benchmark [9] will
be obtained.

• Bus utilization: the relationship between

the total busy time and the time
employed in data transmissions (both
the ones which arrive successfully and
the transmissions which suffer from
some error).

• The number of lost messages: this

value will inform us about the number
of messages that have not been
correctly received due to some kind of
error.

• The number of messages that miss

their deadline: the number of messages
that have been received but have not
met their temporal constraints.

We used the SMPL [4] simulation
language to develop the simulation model.
The first step was to implement the model
of the CAN bus behavior, then, we
introduced a fault rate. This fault rate will

be modified in order to study how the
parameters evolve.

The objective of this model is to compare
the value of the previously cited
parameters according to the use of the
single shot mode (SJA1000) or the normal
operation of the PCA82C200.

The simulation model used the SAE
benchmark [9] as workload. This
benchmark describes the set of messages
used in an electrical car prototype
composed of seven subsystems: the
batteries, the vehicle controller, the
inverter/motor controller, the instrument
panel display, driver inputs, brakes and
the transmission control. The network
connecting these seven subsystems is
required to handle a total of 53 messages,
both sporadic and periodic signals. A
periodic message has a fixed period, and
requires the latency to be less than or
equal to this period. Sporadic messages
have latency requirements imposed by the
application. There is some unspecified
behavior in the benchmark: the maximum
rate at which sporadic messages can
occur as well as the queuing jitter values.
In this study, the same values as in Tindell
et al. [7] will be assumed, and, in order to
reduce the bus utilization, piggybacking
for all the messages sent from the same
source will be employed. For sporadic
signals the approach is to send a server
message periodically (when the server
message has to be sent, the sender task
polls for the occurred signals and fills the
contents of the message).

Reception

The main objective in this point is to
compare the number of overruns in the
two CAN controllers. The 64 bytes
reception buffer of the new CAN controller
(SJA1000) should be responsible of an
important decrease of this number.

When there is no place in the reception
buffer to allocate a new message an
overrun error is produced. There is
certainly a little improvement in the new
CAN controller: in the PCA82C200 the
overrun error is activated when there is no

place to allocate the new message, just
after it has successfully passed the
acceptance test, while in the SJA1000 this
error is activated when a correctly arrived
message has no place in the reception
buffer. So, a message that does not fit in
the reception buffer but suffers from some
kind of bus error does not cause an
overrun error.

An important aspect to take into account if
we want to know when an overrun error
will be produced is the time the
microcontroller needs to release the
reception buffer. Depending on the
microcontroller, its clocks frequency, and
its application (the number of interrupts it
has to attend,...), different performance
can be obtained.

When a new message arrives, the CAN
controller generates an interrupt to the
microcontroller. After the interrupt latency
time, the microcontroller executes the
interrupt handler that gets the message
from the CAN controller and usually stores
it in its memory in order to process it
afterwards. Therefore, the number of
overrun errors depends on the time the
microcontroller takes to remove the
message.

To compare both CAN controllers we use
an 8031 microcontroller from Intel that
usually operates at 12 or 16 Mhz. As
previously exposed, there are several
microcontrollers of this family, from
different manufacturers, which operate at
higher frequency but the PCA82C200
does not grant its time requirements. Only
microcontrollers that are able to insert wait
states in the access to the CAN controller
could be employed if we want to operate
at higher frequencies. It also supposes a
greater cost. It would be possible, for
example, to connect the PCA82C200 with
the new 251 Intel microcontroller, the
successor of the 8031, but this implies
that one wait state has to be added. As
the aim of our study is to test the
functionality of the 64 bytes reception
buffer of the new SJA1000, we will base
our models on the standard 8031 at 16
Mhz even though some comments about
the 251 will be made.

In this sense, if we will know how much
time the 8031 microcontroller will need to
remove the message from the CAN
controller, the next equation (obtained
from a real system developed by the
authors) could be used:
((112+5L)/Mhz)*12 µs, where L is the
number of bytes of the message and Mhz
the crystal frequency of the
microcontroller. This equation could be
different depending on the specific
implementation, the optimizations of the
employed compiler, or if we program in
assembler or a high level language. If we
employ the 251 microcontroller, to access
the CAN controller one wait state has to
be added. So, the following equation has
to be employed: ((211+10L)/Mhz)*2 µs.

With these ideas, a simulation model has
been developed. In this case we used the
QNAP2 (Queuing Network Analysis
Package) [5] language to implement the
model, and the parameters modified were
the message arrival rate and the message
length (from 1 to 8 data bytes). First, we
modeled a general environment with the
arrival of messages of different lengths at
the highest frequency allowed in CAN.
This model was later modified to obtain a
bound of the worst performance (the
highest overrun probability): the reception
of messages of 0 data bytes, without stuff
bits, at the highest frequency (one
message each 47 µs) and at the highest
CAN transmission speed (1 Mbaud).
Another of the studied aspects was the
performance of both CAN controllers in
the presence of message bursts. In this
case we modified the model to study
different burst intervals, number of
messages per burst and size of the
messages. We obtained an estimation of
the suitable message burst intervals from
the SAE benchmark. To compare the
message reception in both CAN
controllers we used the overrun
probability, i.e., the probability to discard a
new message due to the lack of space in
the reception buffer.

Results

Transmission

From the transmission point of view, the
message response time and bus
utilization changes are analyzed. In Figure
1 the response time of message 9 from
the standard SAE benchmark can be
seen. While in the PCA82C200 (200-Msg
9) this time increases when a different
error occurs, in the SJA1000 the response
time remains constant. So, with the new
CAN controller the time the system needs
to send successfully a message can be
bounded. This is very important in real-
time environments.

Response time for message 9

5,8000
6,0000
6,2000
6,4000
6,6000
6,8000
7,0000

No fault 100 ms 50ms 20ms

Mean time between faults

R
e

sp
o

n
se

 t
im

e
 (

m
s)

200-Msg.9 1000-Msg.9

Figure 1: Response time of message 9

In the developed simulations, a
transmission speed of 125 Kbaud was
used. At this transmission speed we
obtained a 85% bus utilization [7,8]. These
circumstances (very high bus traffic) can
help us to study how the previously
commented parameters evolve depending
on the CAN controller we use.

In Figure 2 another interesting aspect can
be observed: when the error rate is too
high, e.g. faults with an exponential
distribution of 20 ms as average or lower,
it is possible that the response time with
the SJA1000 not only remains constant
but also decreases. For example, in
Figure 2 the response time decreases
only a little when the fault rate is not very
high, but when it increases (20 ms
between two faults), the response time
significantly decreases.

Response time for message 5

3,6200
3,6400
3,6600
3,6800
3,7000
3,7200
3,7400
3,7600

No fault 100ms 50ms 20ms

Mean time between faults

R
es

po
ns

e
tim

e
(m

s)

200-Msg.5 1000-Msg.5

 Figure 2: Response time of message 5

In the SJA1000 when an error occurs
while a message is being transmitted, it is
automatically discarded (even though it
has not been completely sent since errors
can appear during the transmission of the
first bits of the message). So, bus
utilization can decrease and messages
response time can also be slightly
improved. The results of the PCA82C200
show the same behavior as the one earlier
observed in Figure 1: the response time
notably increases.

In Figure 3 a similar behavior can be
observed. In this figure the bus utilization
changes as the fault rate increases can be
seen.

Just like the response time, in the
PCA82C200 the bus utilization increases
as the fault rate does (due to the message
retransmissions and the transmission of
error frames) while in the SJA1000 it
remains constant and even decreases
when the fault rate increases.

Bus utilization

0,8400
0,8450
0,8500
0,8550
0,8600
0,8650
0,8700
0,8750

No fault 100ms 50ms 20ms

Mean time between faults

U
til

iz
at

io
n

PCA82C200 SJA1000

Figure 3: Bus utilization

But there are not only advantages. In
Figure 4, the number of messages that
have not been sent can be observed, i.e.
messages that suffered from some error
and therefore not successfully arrived, in
the SJA1000 are relatively high.
Nevertheless, in the worst case the
number of lost messages does not exceed
the 2.8%.

Depending on the application goal to
develop it could be more interesting to
bound the response time even loosing
some messages, or to send all the
messages increasing the response time
(and therefore missing some deadlines).

Lost messages

0

1000

2000

3000

4000

5000

No fault 100ms 50ms 20ms

Mean time between faults

Nu
m

be
r o

f m
es

sa
ge

s

PCA82C200 SJA1000

Figure 4: Lost messages

Missed deadlines

0,0000

200,0000

400,0000

600,0000

800,0000

1000,0000

1200,0000

No fault 100ms 50ms 20ms

Mean time between faults

M
is

se
d

de
ad

lin
es

 n
um

be
r

PCA82C200 SJA1000

Figure 5: Missed deadlines

Figure 5 shows the number of missed
deadlines. In the SJA1000 the number of
correctly received messages that miss
their deadlines is lower than in the
PCA82C200.

Reception

First the behavior of the two CAN
controllers in the worst case will be
studied, the reception of 0 data bytes
messages (without stuff bits) at the
highest possible frequency. The
transmission speed will be modified from
500 Kbps (1 bit transmission time = 2 µs)
to 1 Mbps (1 bit transmission time = 1 µs).
In Figure 6 the obtained overrun
probability with the CAN controllers
connected to the 8031 microcontroller at
16 Mhz can be seen. This probability is
similar in both CAN controllers with only a
little improvement in the SJA1000. This is
due to the fact that the arrival rate
exceeds the reception slot empty time.

Figure 6: Bound of the worst performance

For the 251 microcontroller (at 16 Mhz) no
overrun probability was obtained for both
CAN controller at any transmission speed.

Then the previous models were modified
to use a mix of messages of different
sizes (from 0 to 8 data bytes) as workload.
The messages were again sent at the
maximum frequency. The results obtained
with the 8031 microcontroller can be seen
in Figure 7.

Figure 7: Overrun probability with a mix of
messages.

With this workload only a very little
improvement was obtained when the
SJA1000 was used. Using the 251
microcontroller no difference could be
appreciated since with both CAN
controllers no overrun occurred.

Finally, the reception of burst of messages
varying the time between two bursts, the
number of messages in a burst and the
size of the messages was modeled. In
Figure 8 the results for the PCA82C200
connected to an 8031 (16 Mhz) receiving
1 data byte message bursts with a
frequency of one burst each 5 ms. can be
seen. The variation of the burst interval
(10, 50, 100 ms) did not add any
additional information to the study since
the reception slot empty time is lower than
the burst interval.

Figure 8: Overrun probability in the
PCA82C200 under bursts of messages.

The probability of overrun increases as
the number of messages in each burst
increases. Similar results were obtained
when the size of the messages was
modified. With identical workload no
overrun occurred with the SJA1000.

A better performance can be obtained for
both CAN controllers employing the 251
microcontroller (16 Mhz) since there was
no overrun.

Conclusions

In this paper, performance variation has
been analysed depending on using the

PCA82C200 or the SJA1000 CAN
controller in microcontroller systems. This
study has attended to the circuit only, so it
does not assume anything about the
application level. In this way, it can be
concluded that the new circuit provides, in
terms of transmission, the possibility of
preventing the increase of messages
response time due to errors appearance,
meaningful fact in terms of real-time
systems.

On the other hand, in terms of reception,
the addition in the new circuit of an
enhanced buffer minimises significantly
the number of lost messages due to
overrun errors when burst of messages
occurs. These bursts of messages are
quite common in control applications.
These conclusions are valid for the 8031,
since in case of working with 251-like
microcontrollers there are not significantly
differences. This is due to the fact that in
the 251 the time necessary to empty the
reception slot is considerably lower than in
the 8031.

References

[1] SJA1000. Stand alone CAN Controller.
Data sheet. Objective specification. Philips
Semiconductors. November 1996.
[2] J.Rufino, P. Veríssimo. A study on the
inaccessibility characteristics of the
Controller Area Network. Technical
University of Lisboa. Proceedings of the
2nd International CAN Conference, 1995.
[3] A. Rubio, J.C. Campelo, R. Ors, J.J.
Serrano. Checkpointing in a CAN based
distributed computer control system. Pre-
prints of the 14th IFAC Workshop on
Distributed Computer control Systems,
DCCS’97. Seoul, Korea, July 1997.
[4] M. H. McDougall. Simulating Computer
Systems. Techniques and tools. MIT
Press. 1987.
[5] QNAP2. The Queuing Network
Analysis Package. Reference Manual.
Simulog. 1996.
[6] PCA82C200. Stand alone CAN
Controller. Data sheet. Philips
Semiconductors. February 1992.
[7] K. Tindell, A. Burns. Guaranteeing
Message Latencies on Control Area
Network (CAN). Proceedings of 1st

International CAN Conference. September
1994.
[8] K. Tindell, A. Burns, A.J. Wellings.
Calculating controller area network (CAN)
message response times. Control
Engineering Practice, Vol. 3, nº8 pp.1163-
1169, 1995.
[9] Class C Application Requirements
Considerations. SAE Technical Report
J2056/1. 1993.
[10] M.G. Rodd. Real time and
communication isues. “Application of
artificial intelligence in process control”.
Pages 255-273. Edited by L. Boullart, A.
Krijgsman and R.A Vingerhoeds. Ed.
Pergamon Press, 1992.

Company: Technical University of

Valencia.
Dpt. of Computer Engineering

Address: Camino de Vera s/n
 46022 - Valencia – SPAIN
Phone: +34 96 3877577
Fax: +34 96 3877579
Email: jcampelo@disca.upv.es
Homepage: http://www.disca.upv.es

