
CANopen Devices becoming intelligent with IEC 1131-3
Dipl.-Ing. (FH) Hansjürgen Eberle

IXXAT Automation GmbH, Weingarten, Germany

Prof. Dr.-Ing. Konrad Etschberger

stzp, Weingarten, Germany

Abstract

Shortly after availability, the CANopen standard for industrial automation became
widely accepted within a wide range of applications. With the newest extensions of the
standard, also IEC-1131 programmable devices in distributed, intelligent automation
systems are supported.
When merging CANopen into IEC 1131-based PLCs, facilities have to be provided for
downloading and controlling of programs and tasks and for the dynamic mapping of
PLC network variables into the CANopen Object Dictionary of the controller device.
For program debugging via the CAN bus also an appropriate debugging channel has
to be provided. Furthermore, there are specific CANopen functions like network,
configuration and SDO management which have to be accessible and controllable
from the PLC kernel.
In the paper, the main results of the CiA special interest groups "Framework for
programmable CANopen Devices" and "CANopen Interface Profile for IEC 1131-3
Environments" will be summarized and the basic principle for the implementation of a
IEC 1131-3 programmable CANopen-based PLCs will be described. Also, an integrated
CANopen system configuration and programming tool will be presented shortly.

1 Introduction
The well-known advantages of the CANopen
approach together with the availability of
standardized device profiles[1] made CANopen
in only two years to the most accepted solution
for CAN-based automation systems in Europe.
As the common interface between communi-
cation and application processes, the Object
Dictionary (OD) of a CANopen device provides
a standardized access to all of its parameters,
functions and data which are accessible from
the CAN bus.
The address of a specific Object Dictionary
entry is given by a 16-bit object address
(index) and a 8-bit subobject identifier
(subindex). Accessing of an OD entry is
performed by means of a so-called Service
Data Object (SDO), in which the object
address is specified. The SDO transfer
mechanism supports a peer-to-peer
connection between two devices in a master-
slave relationship, and provides a direct
read/write access to each entry of a slave
Object Dictionary.
Normally the transfer of SDOs takes place only
during system setup for transferring of device
configuration data. Additionally, the
transmission of rarely used low priority process
data is also possible via SDO transfer.
For transferring of time critical process data,
the so-called Process Data Objects (PDOs)
are provided. These allow an unconfirmed
transfer of data up to 8 bytes without any
protocol overhead in form of broadcast
messages.
The data content of a PDO is specified by its
‘PDO-mapping’ which describes the
assembling of different application data into a
PDO. The transmission of a PDO is possible
via several alternative transmission modes like
asynchronous, acyclically synchronous or
cyclically synchronous transmission.
With the synchronous transmission modes and
an additional system time object, advanced
synchronization and time stamping
mechanisms for network wide synchronous
time and data distribution are supported.
CANopen also provides functions for
supervising and controlling of devices. For this
purpose, one device in the network has to take
over the network management mastership.
Simple CANopen devices only have to support
the NMT slave functionality.

2 Specification of a Framework for
Programmable CANopen Devices

With respect to the requirements of advanced
distributed industrial automation systems, the
draft standard proposal DSP 302, ‘Framework
for programmable CANopen devices’[2],
specifies the required improved flexibility and
functionality. The additional features supported
by programmable CANopen devices are:

• Dynamic establishment of SDO connec-

tions between two devices by means of a
SDO Manager. This instance is responsible
for managing of all of the available and
established SDO connections in a network.

• Storage of the system configuration and
parametration data of the network by
means of a Configuration Manager.

• Transmission of multiplexed broadcasting
of data with message grouping by means of
‘Multipexed PDOs’.

• Support of a standardized program
debugging interfaces via the CAN bus. For
that purpose, some additional Object
Dictionary entries have been reserved.

• Support of a standardized mechanism for
downloading of the application program,
based on a basic CANopen operating
system.

3 A Standard Profile for IEC 1131-3

Programmable CANopen Devices
Based on the well established IEC-1131-3
standard for PLC programming languages and
the multi-master capability of the CAN
protocol, the draft standard proposal DSP 405
[3] provides a future-oriented solution for the
implementation of IEC 1131-3 compliant
programmable CANopen devices.

3.1 Network Variables provide Access
across the Network
With the new standard a direct representation
of input and output ‘Network Variables’
(NWVs) in the Device Object Dictionary is
supported. Network Variables represent
remote I/O objects of other CANopen devices
containing the actual data of those objects.
The time critical transfer of NWVs is based on
PDOs. For the representation of NWVs a

separate object range is reserved within the
Device Object Dictionary according to Fig. 3-1.

Fig. 3-1 : Object Dictionary of a IEC 1131-3
programmable CANopen Device

Thereby an ‘Input-NWV’ represents an input to
the CANopen Object Dictionary as seen from
the local application of the CANopen device
and such will be transmitted via a Transmit-
PDO. An ‘Output-NWV’ represents an output
from the Object Dictionary with respect to the
local application.
Since the assignment of Object Dictionary
entries to real remote I/O devices depends on
the specific PLC application normally it has to
be configured by means of a CANopen
configuration tool. After configuration there is
no difference between a standard CANopen
I/O device e.g. according to DS 401 and an
IEC 1131-3 programmable CANopen PLC.

%IB
0000

%IB
0001

%IB
0002

%IB
0003

%IB
0004

%IB
0005

%IB
0006

%IB
0007

.... %IB
8188

%IB
8189

%IB
8190

%IB
8191

%IW

0000

%IW

0001

%IW

0002

%IW

0003

.... %IW

4094

%IW

4095

%ID
0000

%ID
0001

.... %ID
2047

Fig. 3-2 : Mapping of the Process Image in the
Object Dictionary

The number of available NWVs is dependent
on the size of the internal process image of the

PLC. In the standard a large number of
different data types for NWV are defined and
for each supported data type a range of 64
object entries within the Object Dictionary is
reserved (Fig. 3-3).

Fig. 3-3 : Mapping of Network Variables of
different Data Types in the Object Dictionary

With a maximum number of 254 subobjects
per index, a maximum of 64 * 254 = 16256
objects per supported data type is possible.
For mapping of network variables into the
Object Dictionary of a device, the DSP 405
uses an overlapped memory assignment
according to .

With the overlapped mapping of NWVs of
different data type, the maximum number of
objects of the largest data type is determined
by the maximum number of the smallest data
type. For example, if the smallest data type is
Boolean, a maximum size of 16 265 /8 = 2030
Bytes for the process image is available. By
supporting a data type of Unsigned 8, the
maximum size of the process image is 16256
Bytes.

3.2 Provision of Standard CANopen-
specific Function Blocks

In addition to NWVs DS-405 specifies some
basic functions for CANopen-specific network
control and monitoring:

• SDO read/write access to the Object

Dictionary of a remote node. For the SDO
transfer, two different protocols are
available. If less than 5 byte of data have to
be transferred, the ‘expedited multiplexed
domain protocol’[4] should be used.
Therefore the function blocks CIA405_
SDO_WRITE4 respectively CIA405_SDO_
READ4 are specified. For transferring of
larger data blocks, the function blocks for
segmented multiplexed domain transfer are
available. Depending on the largest
supported object length, the PLC-vendor
has to implement function blocks for the
segmented SDO transfer of 7, 14, 21 etc.
bytes of data.

• The selective, respectively global reception
of emergency messages is supported by
the function blocks CIA405_RECV_
EMY_DEV and CIA405_RECV_EMY. With
the later the reception of emergency
messages from any device is possible.

• For controlling of the communication state
of a device the function blocks
CIA405_GET_STATE respectively CIA405_
SET_STATE are specified.

• A PLC application may ask for its own
device node ID by means of the function
CIA405_GET_LOCAL_NODE_ID or read
the current specific error state of its
CANopen kernel by means of the block
CIA_GET_CANOPEN_KERNEL_STATE.

3.3 Definition of Supporting Functions
Since, in terms of IEC 1131-3, a PLC
configuration may consists of several
resources, programs and tasks, it is necessary
to describe the configuration as well as further
functions.
Therefore DSP-405 specifies additional Object
Dictionary entries, for accessing and
controlling of further functions and data of the
PLC. Such functions are for example the
starting and stopping of tasks or changing of
tasks cycle time and priority. Additionally data
has to be provided concerning the version
number, name and status of a configuration,

resource or task. This type of functionality
respectively information is located in the index
range between 9500 hex and 9800 hex of the
Object Dictionary.

4 Basic Structure of a CANopen PLC
In Fig. 4-1 the basic structure of a CANopen
PLC is shown as far as the processing of
process data is concerned. Thereby the PLC is
regarded as a kind of local I/O device of the
CANopen kernel. Since the inputs of the PLC
are no more available locally, they have to be
provided by NWV outputs or standard profile
outputs of the CANopen kernel. In the same
manner outputs of the PLC have to be
provided to the CANopen kernel in form of
NWV inputs or standard profile inputs.

Main task of the CANopen kernel therefore is
the initiation of a corresponding PDO
transmission when a input NWV has changed,
respectively the updating of the PLC process
inputs when the received PDOs respectively
NWV output has changed.

In Fig. 4-2 the basic structure of the interface
between a PLC run-time-system/application

PLC

Output-
Scanner

Input-
Scanner

Process Image Inputs

 CANopen
Protocol - Stack

Process Image Outputs

NWV - Outputs NWV - Inputs

Object Direction

 PLC
Run Time System

CANopen - Kernel

CAN Bus

Fig. 4-1 : Basic Structure of a CANopen PLC

and the CANopen kernel is shown as
implemented by IXXAT Automation GmbH.
The following functions should be requestable
from the PLC application/run time system via a
command interface channel:

• Initiatiation of client SDO requests for

reading or writing of Object Dictionary
entries at other CANopen devices,
connected to the network

• Setup, starting and stopping of the NMT
master, resetting of the network

• Setup, starting and stopping of the network
synchronization and system time processes

• Initiation of the transmission of multiplexed
PDOs

• Initiation of the transmission of emergency
messages

• Setup of the Configuration and SDO
Manager.

On the other hand, the CANopen kernel should
have the possibility to provide status
information and events to the PLC
application/run-time-system via an appropriate
status channel. This type of information
includes the following functions, respectively
messages:

• Signaling of local errors
• Signaling of network related events, e.g.

guarding errors
• Passing of received emergency messages

• Passing of OS command, debug and
prompt requests

• Indication of a reset of the CANopen kernel
via the CAN bus.

• Passing of remote procedure calls

The main elements of the interface shown in
Fig. 4-2 are:

• Command-Buffer
Serves for the confirmed transfer of command
data between runtime system and CANopen
kernel. Only one message can be posted at a
time.
• Tx-Message-Queue
For transferring of one or more event-triggerd
messages from the PLC to the CANopen
kernel.
• Rx-Message-Queue
Provides a message channel from the
CANopen kernel to the PLC run-time-system,
respectively application.
• Status-Buffer
Used for passing of the actual status of the
NMT master, CANopen kernel, guard timing or
other time out values.
• NWV-Input-Image
Represents a memory area for storage of the
actual kernel input data.
• NWV-Output-Image
Represents a memory area for storage of the
actual kernel output data .

Fig. 4-2 : Structure for Interfacing a PLC Application/Run-Time-System with a CANopen Kernel
(Source: IXXAT Automation GmbH)

Of course, for transferring of messages across
the specified interface, an appropriate
message protocol has to be used which allows
the confirmed and unconfirmed transfer of
messages across the interface.

5 Support of System Configuration and
Programming
With the introduction of standardized
programmable CANopen devices which may
communicate without any restriction with any
other intelligent or non-intelligent device in a
network, any type of distributed processing is
possible.

On the other side, the completely free

configurability and programmabilty of such
systems requires the availability of
sophisticated tools for system configuration,
programming and testing.

According to the open philosophy of CANopen,
DSP 405 specifies an open, vendor-
independent interface for the integration of a
system configuration and a IEC 1131-3
programming tool (Fig. 5-2).

According to this specification, the CANopen
Configuration Tool provides the information
about the configured NWVs to the
Programming Tool by means of a standard
CANopen Device Configuration File (DCF).
This includes any of the information which is
necessary for the Programming Tool. Since it
should also be possible that NWVs first are
defined or later changed by the Programming

Fig. 5-1 : CANopen System Configuration Tool (IXXAT Automation GmbH)

Figure 5-2: Standarized Interface between a CANopen System Configuration and a IEC 1131-3
Programming Tool according to DSP 405

Tool, the related information has to be
provided to the Configuration Tool by means of
a so-called Network-Variable-Exchange-File
(NVX-File). This file contains any information
about a newly specified NWV, like name, data
type or direction and has to be processed by
the Configuration Tool appropriately.

In Fig. 5-1 a screenshot of some device-
oriented functions of the IXXAT CANopen
System Tool is shown. The IXXAT CANopen
System Tool therefore assists the system
implementor from starting with system
installation, system and device configuration
and programming to system testing, debugging
and documentation.

The IXXAT CANopen System Tool also
supports the automatic mapping and linking of
PDOs, based on application-specific
communication links between I/O-channels or
NWVs. In this case, the communication
process is almost hidden to the system
implementor. In the final step of a system
configuration process the configuration data is
downloaded onto the devices by the System
Tool, using an SDO channel to each device.

6 Summary
With the availability of considerably extended
communication functionalities, specified in CiA
DSP 302 (dynamic establishment of SDO
channels between devices by means of a SDO
Manager facility, Configuration Manager
facility, multiplexed PDO communication) and
the specification of a standard profile for
intelligent, IEC-1131-3 programmable
CANopen devices, specified in CiA DSP 405,
CANopen now provides any means for the
realization of distributed, freely configurable
automation systems of high performance.
Furthermore, highly sophisticated integrated
System Tools support the implementor of
CANopen-based systems during system
programming, configuration and testing.

Automation GmbH
Doggenriedstraße 40
D-88250 Weingarten
Phone +49-(0)751-56146-0
Fax +49-(0)751-56146-29
Homepage www.ixxat.de
eMail info@ixxat.de

[1] CiA DS-301, Version 3.0, October 1996

CAL based Communication Profile for Industrial
Systems

 CiA DSP-401, Version 1.4, December 1996
CANopen Device Profile for I/O Modules

 CiA DSP-402, Version 1.0, August 1196
CANopen Device Profile for Motion Control and
Drives

 CiA DSP-406, Version 1.91, February 1998
CANopen Device Profile for Encoders

[2] CiA DSP-302, Version 1.0, March 1998
Framework für Programmable CANopen Devices

[3] CiA DSP-405, Version 1.0, March 1998
CANopen Interface Profile for IEC1131
environments

[4] CiA DS-202-2, Version 1,1, February 1997
CAN Application Layer, CMS Protocol Specification

