
A Dynamically Reconfigurable CAN System
Pedro Fonseca1, Fernando Santos2, Alexandre Mota, José Alberto Fonseca*

Abstract

Code for embedded systems is usually developed on a host system and then
downloaded to the target. Several solutions exist to do this; most of them require
plugging some hardware on the target system and connecting it to the host. Although
adequate for mono-processor systems, they become ackward for distributed systems,
mainly for two reasons. Firstly, several targets are required to be connected
simultaneously to a single host. Secondly, targets may not be physically close to the
host.

One solution is to use the existing network to provide communication between host
and targets. We have developed a system based on this solution over a CAN network.
The stations are able to receive the code, store it and start execution, one of the
stations being the gateway to the host. Our system allows the user to control the
whole distributed system, downloading code to any of the stations and starting and
stopping its execution. This is provided at low cost, with no additional hardware
required.

1 Pedro Fonseca was partially supported by Portuguese Government grant PRAXIS XXI BD/3729/94.
2 Fernando Santos was supported by Portuguese Government grant PRAXIS XXI BM/12654/97.
* Sistemas Electrónicos Distribuídos, Departamento de Electrónica, Universidade de Aveiro ,

3810 AVEIRO, Portugal
Tel. +351 34 370984 Fax +351 34 381128 Email: pf@ua.pt URL:http://www.ua.pt/det/sed

1. Introduction

Embedded systems development is a
multidisciplinary trade. The boundary
between hardware and software is vague.
In some cases, both hardware and
software evolve simultaneously through
several development stages. As
embedded applications strive for hiding
the computer inside them, user interface is
primitive (if exists…) and debugging
facilities are close to non-existent. The
features of these systems make
embedded systems development a distinct
discipline on its own.

Several tools exist for the development of
embedded systems. Most of these tools
are oriented towards the case of stand-
alone, single processor systems. This is a
rather simple environment when compared

to distributed embedded systems, where
many sites, running possibly different
versions of the program and physically
distant, must co-operate to achieve a
common goal. During the development
phase, successive versions of the
software must be loaded on multiple sites.
It is not impossible that the same
modification has to be performed on all
sites at same time, thus requiring the
replacement of the software in every one.
This has to be performed in a co-ordinate
fashion, guaranteeing that at any time, the
versions that run on the different sites are
compatible.

We present a solution to assist the
development of embedded distributed
systems, allowing the user to control the
whole system, downloading code to any of
the stations and starting and stopping its
execution. This is provided at low cost,

with no additional hardware required. In
section 2 we present the problems of
developing embedded systems and, in
section 3, the particular case of distributed
embedded systems. In section 4 we
present our proposal, which is detailed in
section 5. Proposals for further work are
presented on section 6 and we conclude
on section 7.

2. The development of embedded systems

Embedded applications software is, at the
present time, mostly developed on a “host"
system, such as a PC or a workstation,
which is able to provide an user interface
that does not exist on the target system.
The host computer runs a cross-compiler
and a linker, that generate code to be
executed on the target system.

The code generated within the host
system must be run on the target system
(the embedded system). Only this allows
the code to be tested on real (or close to
real) conditions. Several solutions exist to
perform this task. In this section, we will
review the most commonly available [1]:

- EPROM programming
- EPROM emulation
- In-circuit emulation
- On-board monitor
- Code loader

EPROM programming is the "real-thing". It
uses all the hardware required for a stand-
alone system and it can be used with any
processor that fetches instructions from
external memory. This solution can
become extremely tedious and testing
facilities are obviously minimal. The use of
external logic analysers is possible, but
rarely an user-friendly choice.

Another possibility is the use of EPROM
emulators. The native code can be
downloaded to an EPROM emulator,
which behaves like the code memory to
the target system. It is targeted to
microprocessors that read the code from

external memory. It may have memory
access timing problems. It requires one
EPROM emulator for each target system.
Debugging capabilities are also minimal
but testing program changes is much
easier and quicker.

When looking for a good insight at the
target system behaviour, In-Circuit
Emulators (ICE) can be used. With an ICE
the target system microprocessor is
replaced by specific hardware, that
emulates it on real time. The cost of this
solution is usually high, namely when
different microprocessors are to be
emulated.

The other two solutions use small resident
programs that communicate with the host
(usually through a serial interface). The
On-board monitor allows the user to
download and debug code, as well as
verify the contents of the processor
registers and memory locations. It can
provide a good insight into the target
behaviour at a reasonable cost. As
processor registers must be accessed
(e.g., to provide step-by-step execution),
the portability of a monitor is very small.

A code loader does nothing but wait for
the host to download the code to the target
system. Once this is done, it will wait for a
signal to start the execution of the
downloaded code. It usually provides
better portability than monitors, at the cost
of reduced target system insight and of
some additional hardware.

3. Embedded distributed systems
development

The solutions that have been presented
for embedded systems development
become awkward for the particular case of
distributed systems. This is due mainly for
two reasons:

- the multiplicity of the targets; and
- their distance from the host.

The first point concerns the number of
sites where the code must run (either by
installing an ROM with the programme or
by connecting these sites to the host).
Most of the methods we have presented
are now unsuitable. Handling EPROMs
with continuously changing versions of the
software is already difficult for a single
site; in a distributed system, with changes
required in several sites, things get even
worst. Emulators (EPROM emulators and
ICEs) become expensive solutions, as
each site requires one. Still, we have the
problem of connecting several emulators
to a single host, which may not be always
possible.

The physical distance from the targets to
the host can make things even more
difficult. The targets may not be accessible
in order to replace the EPROMs at each
new test version; emulators require
plugging some hardware in and
connecting it (by means of a cable, or a
radio link, ...) to the host.

We must therefore look for a solution that
allows testing software that evolves

continuously, in a multiplicity of sites. The
main specifications for our system are:

- being able to download code from
one host to multiple targets;
- allowing targets to be physically
distant from the host.

Other characteristics may be envisaged as
desirable, such as: testing the target
systems (specially in situations where the
targets are not easily accessible),
controlling the execution of the program
from the host (namely, starting and
stopping the program), ...

Distributed systems are built on top of a
network. This network can be used to
provide the communication between the
targets and the host. The advantages of
this approach are:

- no extra hardware is required (no
plug-ins);
- the communication between targets
and host is provided by an existing
infrastructure.

We are then left with two possible
approaches: monitors and code-loaders.
Our solution uses a code-loader over a

Figure 1 - CANivete board

CAN network. The advantages envisaged
in this solution were:

1. simplicity (code loaders are simpler
to develop than monitors and the time
to develop a working prototype would
be shortened); and
2. the possibility of having a system
that would execute code that was
directly "prommable" (code to run in
monitor systems must usually be
relocated, in order to leave room for
the monitor itself, that continues to
reside in program memory).

Incidentally, note that a code loader can
load a monitor; one solution does not
preclude the other.

4. CANivete: a CAN based solution for
distributed systems development

The CANivete board (fig. 1) is a
fundamental part of a system aimed at
providing some help to the designer of
embedded distributed systems. Each
CANivete board is a node on a CAN
network, that is capable of receiving the
program to execute from the CAN
interface and start and stop its execution.
In this way, a large number of nodes of an
embedded distributed system (30 in the
current version) can be connected to a
single host machine, such as a PC or a
workstation. The CANivete boards are
also referred to as the “targets”.

The board has two modes, “download”
and “run”. After power on, the board is in
download mode. In this mode, every node
is waiting to receive the program code
from the CAN network. After the code is
received, the board prepares itself to
change to run mode, which will happen
after a system Reset.

The CANivete system is currently being
used as a development tool within the
Sistemas Electrónicos Distribuídos
("Electronic Distributed Systems") group.

5. System description

A possible physical system configuration
for a CANivete system is shown in figure
2.

JP2 JP3

Board 1
JP2 JP3

Board 2
(...)

JP2 JP3

Board n
JP2 JP3

Board 0
JP4

RS232
COM:
port

PC

120 120

Figure 2 - System architecture

The PC (the host) contains the user
interface software. Normally, the
development system would be located at
the PC too.

Each CANivete board bears an ID
number, which must be unique within the
system. Board no. 0, the gateway board,
provides the communication between the
host and the remaining boards. The ID
numbers of the boards do not need to be
consecutive. The requirements concerning
board IDs is that board 0 must be
connected to the PC, and the ID numbers
of all other boards must be unique.

A minimal system would consist of the
host, the gateway board and one remote
board. (An "hyper-minimal" system would
consist of the PC and the gateway, but no
use could be done of the CAN network).

5.1. Hardware

The CANivete board is based on the
80C592 micro-controller, from Philips ([5]).
This is a variant of the 80C51, to which a
CAN controller (amongst other things) was
added. Like all the members of his family,
this controller uses separate memories for
program and data. Program memory is a
read-only memory (there are no
instructions for writing in the program
memory space).

P Mem

D Mem
CPU

State

ROM

RAM
P

RAM
D

C
A

N

Download

Run

Figure 3 - CANivete working principle.

The working principle of the CANivete
board is depicted in fig. 3. ROM is the
memory containing the CANivete target
board software and RAM_P and RAM_D
are two 32K bytes RAMs. In "Download"
mode, the controller sees the ROM as
program memory and RAM_P as data
memory; after RESET, it will start
executing the program stored in ROM.
This program tells it to wait for the
program to be downloaded through the
CAN network and to store it in the data
memory (RAM_P). After the code has
been received, the board prepares itself to
change to "Run" mode, which will happen
after the next Reset. In "Run" mode, the
controller sees RAM_P as program
memory and RAM_D as data memory; it
will then execute the program that was
previously stored in RAM_P.

This arrangement allows the system to be
able to remotely download code and start
its execution, using software that is directly
"prommable". This has two advantages.
First, prommable code is the standard way
of generating code in any compiler
targeted for embedded systems. Second,
the transition from the development
platform to the working system (where the

code is stored in a ROM) is
straightforward.

5.2. Address space

From the users point of view, the system
contains 32k bytes of program memory
and 32k bytes of data memory. A range of
32k bytes on the upper half of the
addressable data space is reserved for
peripherals (Table 1). The address space
for peripherals consists of 128 identical
blocks of 256 addresses.

 Addr. range Code Data

 0000-7FFFh Program (32k) Data (32k)
 8000-FFFFn (Not

available)
 Peripherals

(256)

Table 1: Memory usage

5.3. Interface

The CANivete board contains a wide set of
input and output signals, both digital and
analogue. These are provided to the user
in several connectors (Fig. 4) and they
include general purpose I/O, digital and
analogue, special function I/O (interrupts,
…) and communication ports (CAN and
RS-232). A detailed description can be
found in [4].

80C592

RS232C

Reset 0

Reset 1
Led 2

Run
Led 1

 Download

CAN

Alim.

High
Low
Gnd

High
Low
Gnd

Gn
d

Rx
d

Tx
d

Gn
d

Rx
d

Tx
d

HW
UART

SW
UART

Watch-Dog
VAng

Vdda
Vcc

R7

Gn
d

Vc
c

I/O Special I/O Digital PWM In Analog

JP10

Gn
d

Gn
d

Vd
da

St
AD

C
AD

C7
AD

C6
AD

C5
AD

C4
AD

C3
AD

C2
AD

C1
AD

C0

Gn
d

Gn
d

PW
M1

PW
M0

Gn
d

Gn
d

Gn
d

Gn
d

P4
.7

P4
.6

P4
.5

P4
.4

P4
.3

P4
.2

P4
.1

P4
.0

RT
2

T2 Int
5

Int
4

Int
3

Int
2

VAng

JP1 JP7 JP6 JP9JP8

Trim

J2
J1

Led 4
Alim.

P4
.4

JP4 JP5 JP3

JP2

Figure 4 - CANivete board layout

5.4. Software

PCLoad program is the user interface at
the host. In the current version, PCLoad
allows downloading the code to the
targets. Commands for starting the
program at the target are not yet available,
as the target currently reconfigures itself to
start executing the code received after a
successful download.

PCLoad uses one of the serial ports as the
default communication port. PCLoad uses
the following syntax:

PCLoad progfile Station_ID
[COM_Port]

progfile is the file with the code to run on
the target, in Intel HEX format, either with
or without the .hex extension. Station_ID is
the ID number of the target where the
program is to run. COM_Port is an
optional argument stating the serial com
port that will be used to communicate with
station 0. If omitted, the default port will be
used.

While downloading, PCLoad displays the
size of the program to download and the
total number of bytes downloaded.
PCLoad should terminate with the number
of downloaded bytes equal to program
size and a message stating the time in
seconds the program ran. By this time, the
target that received the code is prepared
to change to RUN mode.

The boards software consists on two
different programs:

- the gateway program;
- the remote boards program.

The gateway program runs on board no 0.
This is the board connected to the host,
providing the interface to the CANivete
system.

Remote boards run a different program.
This program can be generated by the
CANguru utility (CANivete generator
utility for remote units). CANguru
automatically generates the code to
program the remote board EPROM, given
its ID number. The syntax is:

CANguru board_id

This will generate the code for the remote
board and store in a file called
CAN030xx.HEX, where xx=board_id.
board_id must be an integer between 0
and 29.

5.5. Message protocol

Downloading the code to the target means
sending through the CAN network a
stream that can contain as much as 32k
bytes. Except for very small programs
(that will probably have no other use that
performing simple tests), the size of most
of the programs to download will be on the
range of hundreds of bytes and over. The
short size of a CAN message (8 bytes)
and the associated overhead can reduce
efficiency in the use of the existing
bandwidth.

In this way, we decided to use as much as
possible the useful data space in a CAN
message during downloading phase.
There are currently three kind of
messages: CONTROL, DATA and
ACKNOWLEDGEMENT messages.
CONTROL messages are used to: signal
start and stop of code download, start and
stop code execution, enquiring about node
status,... DATA messages are used to
convey up to 8 bytes of code. ACKNOW-
LEDGEMENT messages are used to
confirm the correct reception of a set of
messages.

Code download starts with a CONTROL
message signalling "start of transmission"
and indicating the program size. The code
is then sent in DATA messages, each
message containing 8 bytes of program
code. The last message may have less
than 8 data bytes, when the code size is
not a multiple of 8. Download ends with a
CONTROL message signalling "end of
transmission" and sending a checksum.
The remote node should check both the
code size and the checksum and respond
with an ACKNOWLEDGEMENT message,
in case of success. The identification of
the remote node and of the message type
is contained in the CAN message ID field.

6. Further work

The CANivete board is yet at an early
stage of its development. The main track
for evolution lies currently on the boards
software. The next version of the board
will include remote control of program
execution, allowing , for instance, quasi-
simultaneous starting of program
execution in the different sites. This can be
particularly useful in experiments carried
on in distributed systems, such as the
study of clock synchronization algorithms,
which has been one of the reasons for the
development of the system ([2,3]).

Developing a monitor will provide a higher
degree of insight, which will be useful for
teaching applications as well as for
research and development.

Another track to follow is the integration of
real-time kernels on the boards software,
allowing the interaction with the remote
boards to be done at the task level (with
hard-real time constraints) and not at the
program level. This real-time kernel would
be in charge of managing the execution of
tasks within the node and of interfacing
with the user trough the network, receiving
the tasks' code and starting and stopping
its execution.

7. Conclusions

We have presented a working solution to
assist the development of distributed
embedded systems. Our solution allows
circumventing the major problems faced in
this task - namely the multiplicity of targets
and its possible distance from the host -
with no additional hardware required and
using the existing communication
infrastructure.

Our proposal comprises the targets
hardware and software and the host
interface. The CANivete board is the

kernel of our system. Each board is a
node on a CAN network, that is capable of
receiving the code to execute from the
CAN interface and start and stop its
execution. The host interface is
responsible for downloading the code and
controlling its execution at the users
request.

The code to be run at the targets can be
generated by any compiler and the
transition from the development system to
a working prototype is straightforward.

The CANivete system provides the
developer of embedded distributed
systems with a testing platform at low cost
and ease of use. The system is also
adequate for teaching environments.

References

[1] Fonseca, J.A., Mota, A., Santos, F,

Fonseca, P, Azevedo, J.L., Cura, J.L.,
“Affordable tools for teaching embedded
systems”, International Conference on
Electronics, Circuits and Systems,
Lisbon, Sept. 1998.

[2] Fonseca, P., Mammeri Z., “A Framework
for the Analysis of Non-Deterministic
Clock Synchronization Algorithms”,
WDAG’96 - 10th Intern. Workshop on
Distributed Algorithms, Lecture Notes in
Computer Science 1151, Springer-
Verlag, Oct. 1996

[3] Fonseca, P., Mammeri Z., Fonseca, J.A.,
“Can we trust Internet for distributed
systems development? A case study on
clock synchronization algorithms”,
INDC’98 - 7th IFIP/ICCC Conference on
Information Networks and Data
Communications, Aveiro, Portugal, June
1998.

[4] Fonseca, P., Santos, F., Mota, A.,
Fonseca, J.A., User’s Manual to the
CANivete Board, Universidade de
Aveiro, Aveiro, Portugal, Febr. 1998

[5] Philips, 80C51 Based Microcontrollers,
IC-20, 1997.

