
A CAN-Based Architecture for Highly Reliable
Communication Systems

H. Hilmer

Prof. Dr.-Ing. H.-D. Kochs
Gerhard-Mercator-Universität Duisburg, Germany

E. Dittmar
ABB Network Control and Protection, Ladenburg, Germany

In many application areas of distributed systems based on serial busses like CAN high
safety and reliability are considered as major functional requirements. In addition, the
communication system has to cope with periodic as well as event-driven messages,
which have to be transferred under hard real-time constraints. Especially where a
considerable amount of event-driven data occurs, a flexible event-oriented scheduling
strategy has to be preferred. But, event-oriented data processing and communication
demand enhanced fault tolerance techniques. This article introduces a distributed
system concept based on a redundant CAN architecture, which is able to meet the
above requirements. Beside hardware replication, extensive fault tolerance protocol
enhancements are provided, comprising fault detection, notification, handling and
recovery.

1 Introduction

Important technical requirements modern
distributed computer control systems are
subject to are:

• Deterministic real-time behavior;
• High reliability/safety.

The real-time and performance demands
can be met by the use of an appropriate
communication protocol, i.e. a bus access
mechanism suitable for the characteristic
of data occurrence. Most often, low level
control systems are characterized by
predominantly periodic data occurrence,
since control services demand the
predetermined, constant exchange of
sensor and actuator data. In addition,
sporadically occurring data such as
process state changes, process alarms,
and component faults have to be
regarded, too. Due to their importance
concerning system reliability and safety,
the real-time constraints of event-driven
information are high.

Highly reliable communication protocols
and architectures often make use of
periodic bus access strategies, such as

time-slice [3], token, or polling methods
which from the performance viewpoint are
very efficient transferring periodically
occurring data. But, periodic
communication protocols have to reserve
bandwidth of the bus medium in order to
transmit spontaneous messages with
minimum delay. In case the amount of
sporadic data exceeds a specific limit,
periodic access strategies are not
appropriate since the average access
delays increase due to the required
amount of reserved bandwidth. As a
result, real-time operation cannot be
guaranteed. Especially regarding large-
scale networks, bandwidth is limited
because a lot of nodes have to be
regarded in the pre-calculated schedule.
Here, an event-triggered multi-master
protocol like CAN seems to be the best
choice. Event-driven protocols provide
very low bus access delays on the
average, unless the busload exceeds a
maximum value. However, determinism of
bus access is limited, because in case
several nodes try to occupy the bus at the
same time the access delays cannot be
determined exactly. The priority controlled
bus access technique of CAN allows the
pre-calculation of worst-case transmission

times for all messages [4]. Thus, the real-
time behavior of CAN is suitable for many
applications.

High reliability and safety of
communication require comprehensive
features concerning fault tolerance,
comprising hardware redundancy and
software for redundancy management.
Since current protocols do not provide
sufficient fault tolerance features, protocol
and architectural enhancements are
necessary. Designing a fault-tolerant
system, a basic goal is to avoid the
negative influence of many fault tolerance
methods on the real-time behavior. Thus,
measures have to be developed, ensuring
highly reliable communication without
restricting system performance.

2 Fault Tolerance Issues

Highly dependable system aspects has
gone unnoticed so far in many
applications. It can be realized by fault-
tolerant system design including hardware
redundancy and mechanisms to manage
fault handling. Fault tolerance means that
the functioning of the entire system is to
be maintained despite faulty components,
i.e. single points of failure must be
avoided. Distributed systems deal with the
multiplication and distribution of
information to locally separated function
modules. Multiplication and distribution
must take place consistently, i.e. an item
of source information must be present at
the receivers in an identical state within a
specific time. Inconsistencies of the
distributed databases caused by faulty
components can lead to a severe
malfunction of the entire system. In
conjunction with consistency, fault
tolerance signifies that even when a fault
occurs data consistency is to be preserved
or restored before the propagation of faults
affects the overall system function.

Inconsistencies can be avoided or at least
detected through the use of a sufficient
protocol strategy. An event-oriented
systems, as opposed to periodic protocols,
require an acknowledgment mechanism in
order to detect a message loss. With
respect to the acknowledgment process,

the degree of reliability increases with the
number of confirming receivers. The
maximum possible reliability of the
transmission of data is obtained with the
atomic broadcast principle: a message is
either correctly received by all of the
operationally capable network nodes or it
is received by none of them. The CAN
transmission strategy provides a very
effective atomic broadcast method. Here,
in the fault-free case the bandwidth of the
communication medium is not loaded by
any acknowledgment traffic. Instead, in
case of a fault the faulty message is
destroyed by the detecting node during the
transmission. As a consequence, all nodes
discard the faulty message and thus, data
consistency is assured. If inconsistencies
cannot be avoided it is necessary to detect
them with a high probability (high error
coverage), and with a minimal delay (low
error latency) in order to be able to start
fault tolerance measures.

Fault-tolerant system design requires the
identification of all potential failure modes
and their impact on the system services.
Furthermore, a fault model has to be
established, describing the faults which
are to be covered by the fault tolerance
mechanisms. Regarding a communication
system based on a serial bus such as
CAN, faults can be classified as follows:

• Global faults lead to a breakdown of the

system-wide communication. This
causes the crash of the overall system
function. Sample global faults are:

− Short failures of the

transmission line,
− Open failures of the

transmission line (interruption of
a bus wire),

− Short failures at a bus-side
output of a network node,

− Bubbling idiot failures, i.e. a
deadlock of the bus due to a
permanently transmitting node.

• Local faults are limited to malfunctions

of node components, leading to a
separation of the erroneous node, but
do not influence overall system
communication seriously.

Additionally, faults can be classified as
temporary and permanent, respectively.

Component faults are to be tolerated
through the use of redundancy in order to
avoid a single point of failure leading to a
breakdown of the entire system. For
example, bus redundancy has to be
provided for in order to maintain overall
communication in spite of a faulty
transmission channel. However,
redundancy has to be managed in an
efficient and suitable way, comprising
different stages:

• Fault detection
• Fault separation (to avoid impairment of

the system operation by an erroneous
component)

• Fault notification (to all of the network
nodes)

• Redundancy switch-over (i.e.
replacement of an erroneous
component by an operational replica)

• Recovery of a consistent system state

The primary goal of fault-tolerant system
design is that in case of a fault redundancy
handling takes place without any loss,
corruption, and duplication of messages.
In other words, data consistency has to be
maintained even in the case of component
faults without exceeding the timing
constraints. The consequence is that the
delays of all fault management stages
have to be bounded and minimized.

Concerning node loss detection, some
CAN layer 7 protocols use so-called life-
guarding methods. Life guarding is used to
refer to the cyclical transmission of life
messages by all of the operational nodes
to a master node. If a life message of a
node does not occur, that indicates a
component fault within that node.
Depending on the cycle time of the life
messages, an unacceptably long time may
pass until the node failure is detected so
that a loss of messages occurs leading to
inconsistencies. In contrast, time-driven
protocols most often use time-out
mechanisms to detect a node loss leading
to unallowable fault latencies, too. After

the detection of errors all the other
network nodes have to be informed within
a minimum period of time. Otherwise, lost,
corrupted, or duplicated messages cause
further inconsistencies demanding
comprehensive recovery operations. Thus,
rapid error detection and notification
mechanisms minimize the design effort for
recovery measures and reduce fault
tolerance latencies.

Fault tolerance comprises the separation
of erroneous components in order to avoid
the propagation of the fault to other
system components. For example, a node
which blockades the communication
channel permanently by a short-circuit at a
bus-side output has to be disconnected.
Concerning distributed systems, the
prevention of error propagation is often
realized through the use of the fail-silent
strategy. A fail-silent node is either
operational as intended or do not produce
any results at all.

Regarding event-triggered protocols, due
to high error detection and notification
latencies, the fail-silent strategy is not
sufficient. Therefore, an active error
mechanism has to be provided for
detecting and indicating a component fault
with a minimal delay. A fault-active node
is able to detect and notify a local fault
autonomously.

3 A Fault-Tolerant CAN Architecture

A standard CAN system is able to tolerate
a subset of the mentioned fault modes.
For example, CAN ensures the
continuation of system operation in case of
transient global faults, such as message
violation caused by EMI by the use of
message repetition, as well as of
permanent local fault (e.g. node losses)
by switching off the faulty node. In
contrast, permanent global faults lead to a
system breakdown. These faults can only
be tolerated by the use of replicated
components. But, the redundant
realization of system components, in

fault-free CAN message transmission

CAN message transmission with repetition

message destruction by error frames caused by temporary EMI

message a

message a message a

message destruction by error frames caused by a global permanent fault

message a

message a

fault detection fault notification bus switch-over

FTCA fault managemant process

bus a

bus b

Figure 1: Atomic Actions in CAN and FTCA

particular of the bus line, requires
additional mechanisms for fault detection,
notification and the consistent changeover
to the replicated components in order to
avoid the violation of the real-time
constraints and of data consistency. CAN
does not provide techniques for
redundancy management. Moreover, the
negative confirmation strategy of CAN
data transmission causes high error
latencies in case of a node loss: the
transmitter of a message does not detect
the total outage of a network node but
rather assumes that if error frames do not
occur all of the receivers have received its
message without faults. Thus, additional
detection mechanisms have to be
designed. Especially the lack of
redundancy management of CAN and the
lack of an efficient node loss detection
gave the motivation for the fault-tolerant
CAN architecture (FTCA). Our system
concept provides the following features:

• Redundancy of bus line and node links

• Fault tolerance management by an
active fault handling strategy (fault-
active nodes), providing low fault
latencies

• Enhanced fault detection capabilities
(high fault detection coverage)

The major objectives and prerequisites of
FTCA are:

• to keep the consistency of data in the

case of a single fault (including
common-mode failures) without
violating the timing constraints

− minimize fault management
latencies

− maximize fault coverage
• to satisfy an extensive fault model in

order to tolerate all local and global
faults;

• to minimize hardware costs (a lot of
techniques, such as majority voting
based on n-of-m structures are
unsuitable from the economic point of
view);

• to use off-the-shelf components;
• to minimize software complexity in

order to prevent the software
enhancements from inducing new fault
sources;

In order to meet the consistency and real-
time constraints in the case of a
component fault, the fault management
process has to be integrated into the
atomic action strategy of CAN data
transmission. That means, the fault
management stages in the case of a
global fault resulting in a bus switch-over
have to be finished until a message loss
violates data consistency. Only when all
messages transmitted during the fault
management process are rejected by the
operational nodes, the fault tolerance
process can be regarded as an atomic
action like a standard CAN transmission
(Fig. 1).

3.1 Spacial Redundancy

As to be seen in the Fig. 2, a distributed
communication system using the proposed
fault tolerance concept comprises fault-
tolerant communication nodes. A node
provides two fully redundant bus links,
each link comprising a micro-controller
(MC), a CAN communication controller
(CAN), and a transceiver (TC).

Figure 2: FTCA Communication Node

3.2 Fail-Active Fault Handling

The fault-active mechanism allows each
communication link to be monitored by the
other link of its node. For this purpose

each micro-controller serves as a
watchdog processor for the other link. In
addition, in case of a component fault a
node is able to become active
autonomously, i.e. it informs all network
nodes about the fault by transmitting a
notification message through the
operational link and communication
channel. Thus, the second bus system
fulfills the function of a watchdog bus.
During normal operation the entire process
data traffic is executed through one
communication channel.

A sample fault reaction process due to the
occurrence of a fault of CAN controller a1,
takes place as follows: CAN controller a1
disrupts all network traffic on bus 1 by
sending error frames until its error counter
reaches 128; reaching the error counter
value 96 CAN controller a1 transmits an
error interrupt to micro-controller a1;
micro-controller a1 informs micro-
controller a2 of the loss of the CAN
controller; micro-controller a2 starts the
transmission of an error notification
message through bus 2; all of the network
nodes receive the error message through
the links 2; all nodes switch off bus 1 and
continue the transmission of process data
through bus 2. The advantage of this
method lies in the fact that the fault
tolerance process is executed while the
faulty CAN controller is in the active error
state (error counter 127). This controller
therefore continuously destroys the
message which is detected as being faulty
up to the switch-over process. As a result,
no message is lost and no faulty message
is processed until the bus switch-over has
finished. Regarding redundant systems,
message losses may occur because the
faulty node is not able to receive any
message until it is replaced by its replica
component. Lost messages have to be
retransmitted through the use of time-
consuming recovery processes. Regarding
the proposed concept, in case of a CAN
controller fault no message loss occurs.
But, specific malfunctions of a micro-
controller may cause the loss of
messages. This situation can occur, for
example, if the fault detection latency is
greater than the duration of the
transmission of a message. Nevertheless,

 Fault Detection Fault Separation Fault Notification Fault Handling Fault Recovery
CAN
(Layer 1+2)

CRC, form, stuff,
bit, acknowledge
error

Error-passive
mode,
Bus-off mode

local fault detection message
repetition,
error counter
decrement

FTCA Watchdog
processor,
enhanced
reception and
transmission
monitoring

Bus and link
switch-off

Watchdog bus
notification

bus and link
replica switch-
over

message
repetition

Table 1: CAN and FTCA Fault Tolerance Techniques

only a few messages are to be
retransmitted causing a minimal recovery
effort. Thus, the preconditions of
maintaining the consistency of data in the
case of a fault are fulfilled. Table 1 gives a
summary of the fault tolerance techniques
of a FTCA system compared to the basic
CAN protocol [1] features.

3.3 Enhanced Error Detection

Concerning the micro-controller and the
CAN chip, there are a few malfunctions,
which can be detected neither by the CAN
error detection mechanism nor by
watchdog mechanism, especially in an
adequate amount of time. Enhancing the
monitoring ability of a watchdog-CPU
allows both the detection of omission
faults of a transmitter and the detection of
reception faults immediately. In the
following, two methods are introduced
improving fault detection capabilities,
such that error latencies are reduced and
fault coverage is increased.

Transmission Monitoring

The method to be introduced provides the
monitoring of each sending process of a
bus link by the watchdog-processor of its
neighbor link. This takes place as follows:
When a node has to transmit a process
message, both micro-controllers of this
node get informed about this task. While
the micro-controller of the process link
performs the transmission, the watchdog
micro-controller is waiting for a signal of
the process micro-controller indicating the
successful transmission completion. As a
result, in the fault-free case, a watchdog-

processor gets a confirmation of each
successful sending process. In case the
confirmation does not arrive, a
transmission loss, caused by a faulty
sending component, is assumed. The
watchdog processor may start a fault
recovery process by transmitting the lost
message through bus a. Thus, fault
latency is minimized, such that a message
loss is detected and re-transmitted at
once.

Reception Monitoring

The total outage of a link component may
cause the omission of messages.
Message omissions have to be detected in
time in order to start the fault tolerance
mechanisms immediately. The following
method provides a mechanism in which
faults can be detected at the point of their
occurrence:

• A master node transmits a low priority

test message permanently;
• Receiving a test message, the CAN-

Controller of each network node sends
a reception interrupt to its micro-
controller;

• The process micro-controller informs
the watchdog-processor of the node
about the reception of the test
message.

Thus, a watchdog-processor gets
reception interrupts periodically; caused
either by test or process messages. In
case a reception confirmation does not
occur, a faulty receiver component is
assumed. Now, the watchdog-processor
starts the fault tolerance process by
transmitting a fault notification message

through the watchdog bus, as mentioned
above. Using this method, the bus is
occupied permanently by process and test
messages, respectively. Due to higher
priorities, the process messages win the
arbitration against the test messages. But,
the medium access delays for process
data increases slightly, since a node trying
to transmit a process message has to wait
until a test message just being transmitted
has finished. In addition, the load of the
link components increases due to the
permanent reception processing. In order
to reduce this load, the frequency of test
message transmission may be reduced.

4 References

[1] CAN Specification 2.0. Philips

Semiconductor. 1994.
[2] Hilmer H., Kochs H.-D., Dittmar E.:

A Fault-Tolerant Architecture for
Large-Scale Distributed Control
Systems. Proceedings of 14th IFAC
Workshop on Distributed Computer
Control Systems (DCCS’97), Seoul,
Korea. 1997.

[3] Kopetz H.: Distributed Fault-Tolerant
Real-Time Systems - The MARS
Approach. IEEE Micro, pp. 25-41,
Feb. 1989.

[4] Tindell K., Burns A.: Guaranteed
Message Latencies for Distributed
Safety Critical Hard Real-Time
Networks. Ycs 229. Dept. Computer
Science, University of York. 1993.

