
EDF message scheduling on a CAN network1

F. Rodríguez, J.C. Campelo
Dept. of Computer Engineering, Technical University of Valencia (SPAIN)

{prodrig, jcampelo}@disca.upv.es

In this paper, Earliest Deadline First (EDF) scheduling algorithm has been translated
to a CAN network by the use of a slightly modified CAN controller, called EDF
controller. With this controller, the network can be modelled as a single, prioritised
queue of messages. The messages use their time-to-deadline as their priority level.
Using EDF scheduling on the network guarantees message transmission times. This
can be also used in conjunction to the task scheduling algorithms in the CPU nodes
to obtain a global scheduling policy related to the whole system. The information
needed to apply a dynamic end-to-end scheduling algorithm can be automatically
delivered into CAN messages when using EDF controllers.

1This work is supported by the Spanish Comisión Interministerial de Ciencia y Tecnología under project number
CICYT-TAP96-1090-C04-01

Introduction

CAN networks ([1, 2]) are becoming more
and more widespread used in the
industrial environment. The main
characteristics of this environment are:

− Short messages are sent across the

network. The information carried is
usually the data collected from
distributed sensors, reference values to
control algorithms, actuators control
signals and so on.

− Low bandwidth needs compared to

general-purpose networks.

− All processes in the system must meet

hard real time constraints. This
imposes time constraints on the
communication network, so the system
schedule can be guaranteed.

− Low cost is a main factor in the

protocol/element selection. One of the
most important cost factors in these
networks is cabling cost.

CAN restricts the maximum data length to
8 bytes, and uses two wires to transmit
balanced data with data rates up to 1
Mbps. In this network, 1s are called
recessive bits and can be overwritten by

0s, called dominant bits. The bus can be
seen as a large, wired-AND gate. If, at any
given time, a node transmit a recessive bit
and a second node transmit a dominant
bit, the resultant bit seen on the network is
a dominant bit. This is the base for
contention resolution.

When several nodes are connected to a
bus, some access mechanism must be
used. In a CAN network, any node listen
the channel until it becomes idle; then, if
there is a pending message, transmission
begins. This can cause that several nodes
compete for the bus transmitting different
messages at the same time.

However, collision resolution does not
destroy the message sent. Any node
transmitting a message still listen the bus
to compare the bits being transmitted with
those listened. At any time while
transmitting the identifier filed, if a
recessive bit is sent and a dominant bit is
listened, means that the node has lost
arbitration and must end transmission
immediately.

As CAN identifiers must be unique across
the network, it is impossible that two
nodes try to transmit data messages with
the same identifier. At the end of the first
field of the message, the identifier field,
the arbitration process has selected one

node for transmission. That node
continues sending bits to the network,
while all the rest keep listening.

Thus, the identifier field of the CAN
message is also the priority of the
message. This field is sent MSB first.
When competing for the bus, dominant
bits win arbitration over recessive bits, so
the lower identifier, the higher priority.

In this article, a simple method to a
dynamic priority assignment to CAN
messages is described. It uses the time-
to-deadline (also known as time laxity) to
assign message priority. The resulting
scheduling policy is the Earliest Deadline
First (EDF). It is a well-known priority
assignment that leads to optimal
scheduling [7] when applied to a set of
tasks competing for the CPU time. Here,
this is translated to CAN messages
competing for bus access.

To obtain EDF message scheduling, it is
necessary to modify a standard CAN
controller to accommodate the needs of
the scheduling algorithm. This modified
version of a CAN controller is called EDF
controller. The approach used here also
allows applying the priority assignment to
the tasks that communicate over the
network. In fact, end-to-end scheduling is
achieved with the use of dynamic priorities
related to the time-to-deadline attribute of
every pair of communicating tasks.

Related work

To use CAN as a real-time industrial area
network, message time constraints must
be guaranteed.

In [11, 12], a deadline monotonic priority
assignment is (statically) used to assign
fixed priorities (message identifier values)
to the messages sent from a set of
communicating tasks within CAN. These
are sent by a set of tasks that have their
period, deadline and length of messages
transmitted described in a standard
workload defined in [3] for the automotive
industry and known as the SAE
benchmark. A theoretical bound is
obtained to calculate the worst-case

response time of any message, and the
SAE workload is proven to be schedulable
when using data rates over 125 Kbps.

Another static scheduling is given in [8] for
the SAE benchmark using bandwidth
reservation to guarantee message
deadlines.

Two dynamic scheduling algorithms are
used in [13, 14] and [9, 10] over a CAN
network. Both make use of a global clock
(through the use of a synchronisation
protocol). Only those messages with tight
deadlines have their waiting time
improved in the first one.

In [9, 10] hard real-time messages
reserve time-slots to guarantee their
deadlines; however, before the reserved
slot arrive, these messages compete with
soft real-time messages for bus access to
improve transmission times. Soft real-time
messages use their time laxity as priority.

However, priority updates are performed
by the communication subsystem,
increasing the overhead of the CPU
nodes. For this overhead to be
acceptable, the time granularity resulted of
an order of magnitude larger than the
period of the events it is supposed to help
scheduling (message transmissions).

End-to-end scheduling

In the SAE benchmark, two sets of tasks
are described, periodic and sporadic. A
periodic task is a repetitive task with
period P that sends a message of length L
that must be transmitted before the
deadline (D time units after the period
begin) is reached. It is assumed that
deadline value is less than or equal to the
corresponding period. A sporadic task is
similar except that has no period but a
minimum inter-arrival time.

A periodic task can be described by figure
1. After activation at time ta (the sending
task becomes ready to execute), the
message must be transmitted before D
time units have elapsed (at time ta + D).

tta ta+DSending task
creating message

time

Message
queueing

time
Message

transmission
delay

Deadline
Period

Task/Message waiting time
Computation/Transmission time

Figure 1. Periodic task attributes

The time from task activation to message
transmission can be divided into 3 parts.
First, sender task must compute some
value that will be delivered on the
message; this time is called TS (sending
task time) and includes the time spent by
the task waiting for CPU service (TS

W) and
the execution time (TS

X). Second, the
message built has to wait into the
controller message queue while higher
priority messages are sent; this is called
TQ. And finally, the message is physically
transmitted over the network; this time is
called TT.

From the previous three time delays, only
the last one is known a-priori. Given the
length of the message and the data rate,
the time TT needed to transmit the
message bits over the network wires can
be easily obtained. The task computation
time TS depends on the task code, the
data being processed, and the overall
workload of the CPU and its scheduling
policy. The queuing delay TQ is the time
needed to transmit all the messages in the
network with higher priorities and depends
on the bus load and the message own
priority.

When the receiving task is taken into
account, a fourth time must be considered
(see figure 2). This is the time the
receiving task needs to process the
message. This time is called TR (receiving
task time) and, like TS, includes the
execution time (TR

X) and the time the task
is waiting for the CPU (TR

W). To guarantee
that receiving task will process the
message before the deadline is reached,
scheduling policies which takes all these
times into account must be applied.

tta ta+D
Receiving task

processing
message time

sending node receiving node

TS = TS
W+TS

X

TQ TT

TR = TR
W+TR

X

Task/Message waiting time
Computation/Transmission time

tq tr

Deadline
Period

Figure 2. Sending and receiving tasks

To obtain an end-to-end scheduling policy,
the transmitting node scheduler must take
TS

X, TT and TR
X into account to assign the

priority of the task when competing for the
CPU. In EDF, the priority of a task at any
given time is the time left to the task
deadline (also known as time laxity).

If we call R(t) the remaining time at time t,
R(ta) = D - (TS

X + TT + TR
X). At activation

time, TS
X and TR

X can only be estimated
with the worst case execution time (wcet)
of send and receive tasks. If the sender
begins execution at any point in time after
R(ta) time units from activation, the
scheduling will fail.

In a CAN network, all messages are sent
through broadcast. It is then possible that
several tasks (in the same or different
nodes) receive and process a single
message. When this is the case, the most
stringent case (the maximum TR

X) must be
used.

After the task has finished and built the
message to be sent, this is queued into
the communication controller at time tq.
The remaining time at this moment R(tq),
must take into account the elapsed time
since activation, the message
transmission delay, the receiving task
computation time and the time to deadline,
so R(tq) = D - (TS

W + TS
X) - (TT + TR

X).
Again, TR

X can only be estimated by its
wcet. However, TS

X is the actual execution
time of the sending task because at tq the
sending task has ended.

The expression TS

W + TS
X is the time used

by the sending task to compute and queue
the message. This can be rewritten as tq -

ta, or now - ta at the moment of message
queuing. The expression TT + TR

X is the
minimum time needed for the message to
traverse the network and be processed by
the receiving task.

The operating system of the sender node
is responsible to activate the task every P
time units. Almost every OS include a
service to obtain the actual time (now),
and it should be easy to add a service to
obtain the activation time of the current
task (ta). The final expression for R(tq) is
then R(tq) = D - (now - ta) - (TT + TR

X).

When the message is sent over the
network it reaches the receiving node at
time tr. The remaining time then is R(tr) =
D - (tr - ta) - TR

X.

The use of the value ta for the receiver
scheduling imposes several problems.
First, ta is the activation time of the sender
task executed in the sender node, and this
information must be delivered to the
receiver somehow. Second, ta is a point of
time measured from the sender node that
has meaning in the receiver node only if
both nodes share the same time clock (ta
is an "absolute" time value).

EDF requirements

There are three scheduling stages in the
end-to-end communication. First, the
transmitting task competes for the CPU at
the sender node. Second, the message to
be sent competes for the bus. Third, the
receiving task competes for the CPU at
the receiving node. If all these stages use
EDF scheduling and time information is
delivered from stage to stage, the whole
system will be EDF scheduled.

At the sender node, TT can be computed
as depends on the time length and
network data rate, which are known
values. TS

X and TR
X can be estimated with

worst-case execution times of sender and
receiver tasks, respectively. All this
information can be introduced into the
scheduler at the sender node to schedule
tasks using EDF policy. When the sending
task becomes ready, its laxity time and
priority is R(ta) = D - (TS

X + TT + TR
X).

For the bus to use EDF, the laxity time for
any real-time message must be used to
assign the message priority within the
network. To accomplish this requirement,
the laxity time at tq is directly used as the
message priority. In fact, as the lower the
CAN message identifier the higher the
priority, if this identifier is the remaining
time of the message, those messages
with less laxity time will be delivered first.
At queuing time, it is easy to compute the
laxity time R(tq) as R(tq) = D - (now - ta) -
(TT + TR

X) and use this as the message
priority.

However, once the message has been
queued and compete with other messages
for the bus, this priority must be
dynamically updated as time goes.

Suppose that a message m1 is queued at
time 5 with 7 time units as its laxity time
and is waiting for the bus to be idle to
begin transmission. At time 10 a second
message m2 is queued with 4 time units
as the remaining time and bus becomes
idle at time 11. This example is illustrated
in the following figure.

t
t=5 t=10 t=11

m1 queued
with priority 7

m2 queued with
priority 4

bus idle.
m2 selected

Figure 3. Fixed priorities example

If fixed priorities are used (e.g. deadline
monotonic as in [11]), message m2 will be
transmitted first. But the message with
lower laxity time at t = 11 is message m1,
so it should be transmitted first. To avoid
this kind of priority inversion (a lower
priority message being transmitted while a
higher priority message is waiting),
priorities should be dynamically updated.
If the time-to-deadline for each message
is periodically updated, message m1 will
have priority 1 and m2 priority 3 at time
11. The message transmitted will be the
lower remaining time, m1, as shown in the
following figure.

t
t=5 t=10 t=11

m1 queued
with priority 7

m2 queued
with priority 4

bus idle.
m1 selected

m1 priority
updated to 2

m2 priority
updated to 3

m1 priority
updated to 1

Figure 4. Dynamic priorities example

For this update to be effective, the update
frequency must be higher than the
maximum frequency of the events on the
bus. In the preceding example, if the
update period is larger than 6 time units,
the schedule will fail. This frequency
requirement invalidates any update
mechanism that uses the same CPU that
executes tasks and queues messages to
be sent over the bus.

When the message arrives at the
receiving node, the message priority (the
CAN identifier) carries the time left to
deadline R(tr). This is the laxity time for
the activation of the receiver task. The
message priority has taken TT and the
wcet of TR

X into account, so the value of
the priority field when the message arrives
at the receiver node is the maximum time
the receiver task can delayed.

If the receiving task begins execution at
any point of time R(tr) time units after
message reception, the scheduling will
fail.

EDF controller design

This section is devoted to reveal the
differences between a standard CAN
controller and a controller to achieve EDF
scheduling, which will be denoted as EDF
controller.

First, queuing a high priority message
while a low priority message is waiting
should not help a lower priority message
in another node gaining access prior to
the high priority message. This problem
has been shown in [12] for the 82c200
CAN controller, with a single transmission
buffer [4]. To queue the high priority
message, the lower priority message must
be released first from the transmission
buffer. Between the time the lower priority

message is released and the time the
higher priority message is copied into the
controller transmission buffer, no message
can begin transmission for this node. It is
then possible that a lower priority
message from other node gains access to
the CAN network. This is avoided when
the CAN controller offers more than one
transmission buffer, because no buffer
release is needed to queue the high
priority message.

This problem persists even on new
controller designs, like the SJA1000,
described in [5].

Second, message ordering in the queue of
the controller should be based on the
priority field of the message. Interestingly,
only some the newest controller designs
(e.g. the Motorola's TouCAN controller [6])
use this approach, and as "added"
feature. Message ordering inside a CAN
controller with more than one buffer is
usually done through the buffer slot
number. Message stored in the first slot is
transmitted first and competes with its
priority to gain access to the bus with the
rest of messages of other nodes. This
breaks the EDF rule, and must be
avoided. In [13], this problem is avoided
ensuring that no node has more
messages to transmit than transmission
slots in a CAN controller.

Finally, once a message is built and ready
for transmission, its priority must be
periodically updated at a frequency higher
than maximum message transmission
frequency. This can be achieved by
specialised hardware only, a down
counter associated with each message
identifier on the queue. As the laxity time
used as message priority is a time interval
value (a count of time units) and not an
“absolute” time, there is no need for the
clocks of the nodes to be synchronised for
this purpose.

Not all the bits in the message identifier
field can be used to store the laxity time
for the message. The CAN standard
requires message identifiers to be unique
across the network. In [13], eight bits are
used to store the laxity time of the

message. This value is encoded and
stored into the most significant bits of the
CAN identifier.

However, deadline values for the set of
tasks described by the SAE benchmark
range from 5ms to 1000ms. To use a
direct encoding (as proposed in [13]) the
time granularity of the encoded time laxity
must be 4ms or more. With a set of tasks
that execute and send messages every
5ms, this time granularity is impractical.

The approach taken with the EDF
controller is a two-level encoding, as
shown in figure 5. Time granularity is
reduced to the maximum for tight
deadlines, while a larger time period (2K
times the time granularity) is used for
larger deadlines. Those deadlines
encoded with the former time granularity
are called fine-grained deadlines; when
the latter is used they are called coarse-
grained deadlines.

0 fffffff i... ii Tight deadline,
fine-grain encoded time laxity

1 ccccccc i... ii Large deadline,
coarse-grain encoded time laxity

1 1111111 i... ii Background message,
no deadline

K bits to code the message's laxity time.

M bits to code the message's identifier

Figure 5. Priority encoding

When a coarse-grain deadline reaches its
last period, it is automatically translated
into a fine-grain deadline. When a fine-
grain deadline reaches 0, the message
has lost its deadline and an interrupt is
immediately raised to inform the system.
To ensure those tight deadlines (coded
with fine-grain time granularity) will have
always the highest priority, they are
preceded by a dominant bit.

As shown in the figure above, the CAN
identifier is divided into 3 parts. The MSB
bit is a dominant/recessive bit to
distinguish between tight and large
deadlines. The next K bits are used to
encode the time laxity of the message.
This leaves M = L - K - 1 bits for the
message identifier, being L the total

number of bits into the CAN identifier field
(11 bits on standard frames, 29 bits on
extended frames). This arrangement
ensures that messages will have a unique
CAN identifier and that messages with
lower laxity times will have higher priority
over large laxity time messages.

Each coarse-grain period is 2K times a
fine-grain period. With K=7, and a fine-
grain of 64 µs, each coarse-grain period is
greater than 8 ms. The larger time laxity
than can be encoded is greater than 1000
ms. This ensures the whole range of
deadlines of the SAE benchmark is
covered. Tight deadlines (laxity times up
to 8 ms) are updated every 64 µs while
larger deadlines are updated every 8192
µs.

Design considerations for background
messages

Not all the messages in a network have
time constraints. There are also
background messages that should be sent
only when the bus is idle and no time-
constrained message is waiting. These
messages are usually related to added
functionality of the system, not needed for
the basic function.

The EDF controller is able to work in a
different way for these messages. As
background messages, no laxity time is
used and the priority is never updated.
One control bit of the transmission buffer
is used to enable the priority update. If this
update is disabled and the laxity time field
is filled with recessive bits, these
messages never reach the priority levels
of any time-constrained message.

EDF controller design details

In this section, a detailed explanation of
the controller design trade-offs is shown.

The main objective of this work is to
modify a standard controller design as
little as possible, resulting into reasonable
silicon costs.

To achieve this goal, the easiest way is to
use two global clock lines (fine and coarse

clocks) to update priorities of all the
messages into the controller, as shown in
figure 6.

Freq.
divider

2K Freq.
divider

Base
clock

Fine-grain clock

Coarse-grain clock

M
U
X

Update laxity
field clock

MSB of
CAN id

Each transmission
buffer

 Figure 6. Two global clock lines

This will minimise the silicon costs.
However, this approach leads to large
quantization errors when the application
maps the laxity time R(tq) within the two-
level encoding mechanism used by the
EDF controller that must be taken into
account.

As both clock dividers are asynchronous
to message queuing events, using this
design will lead to a mapping worst case
error of 2(K+1) Tfg, being Tfg the fine-grain
period.

This worst case comes from a coarse-
grain message with a time laxity of
((N+1)2K - Δ)Tfg, Δ→0, queued just before
the coarse-grain period expires.

The application maps the message's laxity
into 2KTfg blocks (coarse-grain periods),
giving N. As the coarse period is about to
expire, this laxity is immediately updated
to N-1. The mapping error is ε = actual
laxity - laxity mapped value = ((N+1)2K -
Δ)Tfg - (N-1)2KTfg = 2(K+1)Tfg - ΔTfg.

With Δ→0, the error is ε = 2(K+1)Tfg.

Freq.
divider

2K Freq.
divider

Base
clock

Fine-grain
clock

Coarse-grain clock

M
U
X

Update laxity
field clock

MSB of
CAN id

Each transmission buffer

Reset each time the laxity
field is written by the CPU

Figure 7. EDF controller design detail

To reduce this mapping error, the
controller design (see figure above) uses
a single, programmable frequency divider
to obtain the fine-grain clock from a base

clock. Each transmission buffer has its
own clock divider to obtain the coarse-
grain period; this is re-started each time
the CPU writes the laxity field of the CAN
identifier.

As the coarse-grain period starts when the
message is queued, the worst case
mapping error is reduced to ε = ((N+1)2K -
Δ)Tfg - 2KNTfg = 2KTfg - ΔTfg = 2KTfg.

Following the above reasoning, the worst
case mapping error for a fine-grain
message is ε = 2Tfg. These mapping
errors must be included into R(tq) to
perform schedulability tests, as follows:

R(tq) = D - ε - (now - ta) - (TT + TR

X)

To summarise, an EDF controller is a
CAN controller with these added features:
i) it offers more than a single transmission
buffer, ii) the messages ready for
transmission in the controller are ordered
by their priority, and iii) the message
priority is periodically updated without
CPU intervention and with small mapping
errors.

The EDF controller design has been
targeted on an Altera's EPF10K10
macrocell-based PLD device. The silicon
size increase is well below 5% when a
single transmit buffer is taken into
account. When the size of the whole
controller is used, the silicon costs
induced by the EDF requirements are
negligible.

Conclusions

In this paper, the CAN network has been
shown as a good choice to schedule a set
of communicating tasks with hard real-
time constraints. A well-known dynamic
scheduling algorithm, EDF, has been
applied.

Even better, CAN messages deliver
automatically-updated, valuable time
information from sender to receiver nodes
allowing the use of EDF not only in the
network but also as the scheduling
algorithm for the tasks competing for CPU
access in a given node (end-to-end

scheduling). The whole system schedule
is EDF, an optimal dynamic priority
assignment based on the time-to-deadline
attribute of the object (task, message)
being observed.

A modified CAN controller, called EDF
controller, makes use of time laxity of
messages to order them across the
network. The modifications needed over a
standard CAN controller have also been
shown to be of a reasonable cost. These
are focused on the message queue of the
controller, that meets the characteristics of
being priority-ordered and periodically
updated.

Finally, as not every message in the
network has a deadline, background
messages are included in the EDF
controller with minor modifications.

References

[1] Road Vehicles - Interchange of Digital
Information - Controller Area Network
(CAN) for High Speed Communications.
ISO DIS 11898, February 1992.
[2] CAN Specification version 2.0. Robert
Bosch GmbH, 1991.
[3] Class C Application Requirements
Considerations. SAE Technical Report
J2056/1, 1993.
[4] PCA82C200 Stand alone CAN
controller data sheet. Philips
semiconductors.
[5] SJA1000 Stand alone CAN controller
data sheet objective specification. Philips
semiconductors.
[6] MC68336/376 User's Manual. Motorola
Semiconductors, 1996.
[7] H. Chetto and M. Chetto. Some results
of the Earliest Deadline Scheduling
Algorithm. IEEE Trans. on Software Eng.,
vol. 15, no. 10, October 1989.
[8] H. Kopetz. A solution to an Automotive
Control System Benchmark. Research
report 4/1994, Institut für Technische
Informatik, Technische Universität Wien,
April 1994.
[9] M.A. Livani and J. Kaiser. EDF
Consensus on CAN Bus Access for Real-
Time Dynamic Applications. Lecture notes
on Computer Science, vol. 1388, pp.
1088-1097. Springer-Verlag, 1998.

[10] M.A. Livani, J. Kaiser and W.J. Jia.
Scheduling Hard and Soft Real-Time
Communication in the Controller Area
Network (CAN). 23rd IFAC/IFIP Intl.
Workshop on Real-Time Programming,
China, 1998.
[11] K.Tindell and A.Burns. Guaranteeing
Message Latencies on Control Area
Network (CAN). Proc. 1st Intl. CAN
Conference, 1994.
[12] K. Tindell, A. Burns and A.J. Wellings.
Calculating controller area network (CAN)
message response times. Control Eng.
Practice, vol. 3, no. 8, pp. 1163-1169,
1995.
[13] K.M. Zuberi and K.G. Shin. Non-
Preemptive Scheduling of Messages on
Controller Area Network for Real-Time
Control Applications. Proc. 5th Real-Time
Technologies and Applications
Symposium, 1995.
[14] K.M. Zuberi and K.G. Shin. Real-Time
Decentralized Control with CAN. Proc. Intl.
IEEE Conf. on Emerging Technologies
and Factory Automation, 1996.

Technical University of Valencia
Dept. Computer Engineering
Camino de Vera, s/n, E46022 Valencia
(SPAIN)
Phone: +(34) 96 387 75 77
Fax: +(34) 96 387 95 79
E-mail: prodrig@disca.upv.es
Homepage: http://www.disca.upv.es

