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Fieldbus networks should be able to support several kinds of data exchanges, 
characterised by very different requirements. The most popular solutions available 
today on the market are designed bearing in mind some sets of specific needs and 
usually are not always satisfactory for every kind of communications which can be 
found in an industrial environment. 
In this paper a modification of the basic Controller Area Network (CAN) medium access 
technique is described which increases significantly the communication efficiency for 
the periodic exchanges of process data and for the messages devoted to high level 
functions, without affecting the very good responsiveness and flexibility of the 
conventional CAN protocol. 
 
1 Introduction 
Fieldbus networks should support several 
kinds of traffic, as a consequence of today’s 
more and more sophisticated control 
applications. In an automated factory 
environment, in particular, there are 
basically two kinds of communication 
needs: process data, which directly affect 
the controlled system and messages, 
devoted to high level functions and 
parameterisation. Process data are small-
sized (8 to 32 bit-long words are commonly 
adopted) and characterised by real-time 
requirements, while messages can be 
arbitrarily long and the timings involved in 
their transmission usually are not a critical 
issue. Process data exchanges can be 
further classified as predictable and 
unpredictable. Predictable data exchanges 
(also known as cyclic, periodic or synchro-
nous) take place at well defined times, 
which are known a priori by the control 
application, while it is not possible to know 
in advance the exchange times for 
unpredictable data (also known as sporadic, 
asynchronous, acyclic or aperiodic).  
On the one hand, predictable data are 
usually involved in those systems in which a 
controller device (PLC, CNC, etc.) inquiries 
the different I/O devices for the measured 
input data and status information and sends 
them back the related commands and set-
points according to a fixed schedule. In this 
case, it is very important that cyclic data be 
exchanged at a very precise rate and that 
the jitters be kept low, in order for the 
physical system to be accurately controlled. 
On the other hand, unpredictable data are 
important in event-driven systems, where 

sensor devices have to send the measured 
values to the intended destination(s) as 
soon as they are sampled from the physical 
system. Moreover, sporadic transmissions 
are useful for implementing urgent 
interactions such as, for example, alarm 
notifications or trigger signals. In this case, 
the communication system should be able 
to order the concurrent transmission 
requests according to some precedence 
criteria, so as to grant a suitable schedule 
for the related exchanges. 
High level functions usually have not 
particular timing constraints and the related 
messages can be sent at a lower priority 
than the real-time data. However, they may 
require the transmission of a large amount 
of information. Hence, it is required that the 
available bandwidth of the communication 
system be shared out efficiently and fairly 
among the different nodes. 
Each fieldbus network has basically to face 
two main physical limitations: first, the 
available bandwidth is a limited resource 
and, second, at any time only one node can 
be enabled to transmit a frame on the 

† Dipartimento di Automatica e Informatica 
‡ Centro di Studi per l’Elaborazione 

Numerale dei Segnali 
Politecnico di Torino 
Corso Duca degli Abruzzi, 24 
10129 Torino - Italy 
Phone:  +39 011 564 7078 / 7061 
Fax:  +39 011 564 7099 
E-mail:  {cena,valenzano}@polito.it 
Homepage: http://www.polito.it/~cena 

 http://www.polito.it/~valenzano 
 
 



shared communication medium. Bearing in 
mind these constraints, an ideal communi-
cation system for industrial environments 
should behave as follows: 
• the transmission of cyclic process data 

(which requires a percentage of the 
system bandwidth known in advance) 
have to be carried out with the highest 
precedence at the required rate, and the 
frequency jitters must be kept as low as 
possible; 

• the part of network bandwidth which is 
not assigned to cyclic exchanges is 
used for non-critical real-time sporadic 
process data; as long as an overload 
condition does not occur on the 
network, bounded transmission delays 
must be ensured: to this extent, priority 
tags can be assigned to the different 
data in order to set the correct 
precedence among concurrent 
exchanges; 

• the amount of network bandwidth not 
used for real-time data exchanges (both 
cyclic and sporadic) is shared out fairly 
and efficiently among the different 
nodes needing to transmit messages for 
supporting high level functions, so as to 
maximise the throughput for each node; 
in this case temporary network 
overloads are tolerated and must be 
managed correctly by the network 
without affecting the real-time 
exchanges; 

• timings of very urgent sporadic data 
(critical alarms, whose occurrences are 
unpredictable) must be strictly 
respected; to this extent, their 
transmissions can pre-empt any non-
critical transmission (either process data 
or messages) which is currently taking 
place on the network. 

In the following, a new access technique 
and new transmission services are 
proposed for the Controller Area Network 
protocol whose behaviour is close to the 
ideal solution mentioned above. The paper 
is structured as follows: section 2 analyses 
the properties of several existing medium 
access control (MAC) mechanisms, while 
section 3 introduces the relevant 
characteristics of the new protocol. Section 
4, finally, contains considerations on how 
the new technique can be applied. 

2 Medium access techniques 
characteristics 

When the timings of all the data exchanges 
are known in advance, such as in the case 
of systems based only on cyclic exchanges, 
a time division multiple access (TDMA) 
technique is surely the most efficient 
solution. TDMA combines all the data 
produced or consumed by different nodes in 
a single (summation) frame and requires 
that the protocol control information be 
added only once per frame in order to 
achieve bit and frame synchronisation and 
appropriate error controls.  
TDMA ensures the highest efficiency 
among all the different MAC techniques. In 
Interbus [1] (which is based on a MAC 
technique whose behaviour is similar to 
TDMA), for example, the efficiency for a 
sample controlled system can be as high as 
0.6 (i.e. 60%). On the contrary, TDMA is 
very unsuited for sporadic data exchanges 
and high level communications, in that it 
requires the system bandwidth to be 
allocated in advance to the different nodes 
thus leading to poor flexibility. In this case, 
the bandwidth which is not used by a node 
cannot be reallocated to other stations, so 
that it is effectively wasted. 
When sporadic process data need to be 
exchanged, a carrier sense multiple access 
(CSMA) technique with deterministic 
collision resolution, such as the one 
adopted in the controller area network 
(CAN) protocol [2][3], appears to be one of 
the most suited solutions. In this case, 
unlike pure CSMA, each different piece of 
information is assigned a priority tag 
(identifier). When a node needs to send a 
message, it starts the transmission as soon 
as the medium is free and, if a collision 
takes place, the contention is solved by 
means of an arbitration phase based on the 
value of the identifiers. The access 
technique of CAN, together with its limited 
payload size (up to 8 data bytes per frame 
are allowed), ensures very short response 
times and enables a scheduling policy 
which is truly distributed and dynamic. 
Exchanging small pieces of information in a 
message-based network like CAN, 
however, leads to very poor efficiency. In 
the case of remotely requested 8 bit cyclic 
process data, the efficiency drops down to 
about 0.08, which means that the neat 
bandwidth effectively available is less than 



one tenth of the network bit rate. In the 
same way, the small payload of CAN 
frames leads to a reduced efficiency for 
large messages, because of the relevant 
effect of the fragmentation [4]. 
Finally, when message transmissions are 
considered, a token-based access 
technique such as that adopted in Profibus 
[5] (where each single frame can include up 
to 246 user data bytes) seems to offer more 
satisfactory performances with respect to 
Interbus and CAN, at least from the point of 
view of the bandwidth share-out (in terms of 
both flexibility and efficiency). In this case, 
however, a reduced responsiveness and 
increased jitters are obtained for real-time 
process data. 
As shown in Tab. 1, each kind of medium 
access technique provides optimal 
performances for a particular type of data 
exchanges, while it is usually less suited to 
other kinds of communications required in 
the factory automation systems. The basic 
idea of this paper is to find a satisfactory 
trade-off between the CSMA and TDMA 
access techniques for getting the most out 
of a fieldbus network. In this paper we 
propose a modification to the CAN protocol 
[2] [3] (called CAN+) which introduces 
TDMA-like data exchanges and also 
improves the transmission efficiency of low 
priority messages without reducing the 
responsiveness and the flexibility of 
conventional CAN. As will be shown, the 
resulting protocol combines the best 
features of a number of fieldbus protocols 
and ensures a very high efficiency and 
responsiveness in all the operating 
conditions. 

3 CAN+ basics 
The original CAN protocol exhibits very 
good performance for exchanging sporadic 
real-time data, while no special service is 
provided for cyclic data exchanges or for 
the transmission of large messages. This 
section describes the additional services of 
CAN+ which enhance the performance of 
CAN for the data exchanges mentioned 
above. 
CAN+ introduces two new services, which 
are used respectively to collect the process 
input data and to distribute the process 
output data to a number of slave devices at 
the same time, thus providing a mechanism 
similar to the summation frame of Interbus 
[1]. Since the summation frame is usually 
larger than the conventional frames, the 
overall responsiveness is somehow 
reduced. To avoid excessive transmission 
delays, a pre-emption mechanism has been 
provided for extremely urgent notifications. 
Moreover, a service explicitly conceived for 
high efficiency message transmissions has 
also been introduced. 
The new services make use of a MAC 
technique and frame formats very similar to 
conventional CAN, hence a certain degree 
of backward compatibility is ensured, at 
least from the applications’ point of view. 
3.1 Cyclic exchanges 
Since the timings of cyclic data exchanges 
are known in advance, a technique similar 
to TDMA is used in CAN+ which relies on a 
master-slave interaction model to increase 
the communication efficiency. In particular, 
a solution similar to the summation frame of 
Interbus has been adopted where all the 

Medium Access 
Technique 

Kind of traffic 
Predictable Unpredictable Messages 

TDMA 
(Interbus-S) 

High efficiency (combined 
message, one master / many 
slaves) 

Medium responsiveness  
(can only be implemented 
with periodic exchanges) 

Medium efficiency / medium 
flexibility (high fragmentation, 
static allocation) 

CSMA  
(CAN) 

Medium efficiency (message-
based, each node is a 
master)  

High responsiveness (truly 
dynamic and fully 
distributed) 

Medium efficiency / high 
flexibility (high fragmentation, 
dynamic allocation) 

Token Passing 
(PROFIBUS) 

Medium efficiency (message-
based, more than one master 
/ many slaves) 

Medium responsiveness 
(can only be initiated by 
masters at token reception) 

High efficiency / high flexibility 
(low fragmentation, dynamic 
allocation) 

CAN+ High efficiency (combined 
message, many masters / 
many slaves) 

High responsiveness (truly 
dynamic and fully 
distributed, pre-emptive) 

High efficiency / high flexibility  
(low fragmentation, fair and 
dynamic allocation) 

Tab. 1: Characteristics and performances of some popular fieldbus networks. 

 



output process data are transmitted in a 
single (large) OUT frame, while a special IN 
frame is used to collect all the input process 
data. The resulting efficiency increases 
because in general a smaller number of 
control bits are used by the protocol. 
Unlike the single summation frame of 
Interbus, two kind of data-link services are 
provided, that is L_IN and L_OUT, which 
are used to read/write the input/output data 
from/to the slave devices, respectively. This 
is mainly due to the simple bus structure of 
CAN networks, whose nodes have not 
separate incoming and outgoing links as in 
Interbus. In the case of cyclic exchanges, 
the initiator of the service (either L_OUT or 
L_IN) is the cycle master, while the other 
devices involved are said cycle slaves.  
Unlike Interbus, CAN+ is able to support 
more than one master on the same 
network, and each master can support 
different kinds of cycles (each one 
characterised by a unique cycle identifier), 
to allow each group of slave devices to be 
sampled at a different rate (as occurs, for 
example, in the FIP [6] protocol). This 
provides a further improvement of the 
overall efficiency. At a first glance, the use 
of long frames could reduce the network 
responsiveness unacceptably. In practice, 
cyclic process data usually have a higher 
precedence than the other kinds of 
information exchanged on the network, and 
the strict respect of their timings is always 
considered a fundamental requirement. If 
urgent sporadic data need to be sent with 
very tight timing requirements a pre-
emption mechanism is provided in CAN+ to 
stop the IN and OUT frame transmissions, 
as described in detail in section 3.3. 
Fig. 1 shows the format of the OUT frame. 

In this case, the cycle master puts the 
output process data for the different devices 
(one output slot for each slave device) 
directly after the frame length field (which is 
6 bits long). Optionally (as specified in the 
configuration phase) a 4-bits ACK field can 
be included in each output slot immediately 
after the data field. As in CAN, the OS ACK 
field is made up of an ACK slot, which is 
overwritten with a dominant value by the 
intended receiver of the process datum to 
confirm the correct reception, followed by a 
recessive ACK delimiter bit. The ACK field 
begins with a synchronisation sequence, 
consisting of a dominant bit followed by a 
recessive bit, which provides a 
synchronisation edge in the bit stream and 
is used to transfer temporarily the right to 
access the shared communication medium 
to the slave device. The last output slot is 
followed by a dummy field which pads the 
overall data field to the nearest byte 
boundary. 
Fig. 2 depicts the format of the IN frame. In 
this case, each piece of input data is 
preceded by a pair of bits which 
respectively specify whether the responding 
device is operating (slot present bit) and if 
the returned data have been refreshed 
since the last read operation (slot valid bit, 
used for checking the temporal coherency 
[6]). If a slave device does not respond (as 
indicated by a recessive value in the 
“present” bit), the cycle master must fill the 
gap on the bus with a dummy pattern so 
that the overall IN frame does not violate 
the bit stuffing rules.  
Each input slot is followed by a 
synchronisation sequence for transferring 
the ownership of the bus to the next slave. 
When the last input slot has been 

OS ACK delimiter 

Output Data field (OD) 

OS ACK slot 

optional OS ACK field  

S 
O 
F 
 

OS1 PAD CRC Frame 
Length ACK 

0 to N output slots 

EOF Cycle 
ID OS2 OS3 

Sync. 
Seq. 

Output Slot 
(OS) 

Fig. 1: Format of the OUT frame. 



exchanged, the cycle master sends a pad 
field, followed by the CRC field which is 
checked by all the nodes in the network. 
Each slave device computes the CRC and 
invalidates the whole frame in the case a 
mismatch is detected.  
Input data are updated on the slave side by 
means of the L_UPDATE service, which 
writes the new value for the device into a 
local buffer. The data read from the different 
devices are then transferred effectively to 
the cycle master by means of the next IN 
frame circulated on the network. 
Fig. 3 (which is related to the L_IN service) 
shows that the communication efficiency 
depends directly on the size of the 
combined data field, that is on the number 
of slave devices and the size of the process 
data. Since we do not wish to affect the 
responsiveness of the system heavily, the 
size of the data field in the IN and the OUT 
frames is limited to 63 bytes. As shown in 
Fig. 3, any further increase of this size does 
not lead to any real improvement of the 
network efficiency but the transmission 
delays are worsened accordingly. When 
cyclic process data exceed the 63 bytes 
limit, they can be split in several (different) 
cycles. 
To make a comparison, in a conventional 
CAN network the efficiency for a cyclic 
exchange of 8 bit-sized asynchronous 
process data is only about 0.14, irrespective 
of the number of slave devices in the 
system, and that value drops down to 0.08 
when slave devices are polled by the 
master by means of RTR frames. In a 
similar system where 10 different slave 
devices are grouped together by means of 
the L_IN service, the efficiency of CAN+ 
rises up to 0.46. 

Cyclic services are not symmetric and 
hence two different roles are involved, that 
is master devices (controllers) and slave 
devices (sensors and actuators). The exact 
position of a particular slot in the IN and 
OUT frames is known only to the 
associated slave device and to the cycle 
master. This means that the combined 
frame is seen by the other nodes in the 
network as any conventional frame, since 
the mechanism ensures that the bit stuffing 
rules are always respected, even when 
some slave is in a non-operational state.  
A suited configuration phase should be 
provided (before the normal operations are 
started) where the cycle master notifies 
each device the position of its input and 
output data slots in the combined frame. 
Such a configuration phase can be either 
static or dynamic; in the latter case, the 
conventional services of CAN can be used 
for the configuration operations. 
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Fig. 3: Transmission efficiency of the cyclic 
exchanges vs. number of slave devices and 

size of data. 

Slot valid bit 

Input Data field (ID) 

S 
O 
F 
 

IS1 PAD CRC Frame 
Length ACK 

0 to N input slots 

EOF Cycle 
ID IS2 IS3 

Sync. 
Seq. 

Sync. 
Seq. 

Slot present bit 

Input slot 
(IS) 

Fig. 2: Format of the IN frame. 



3.2 Block transfer 
To ensure a satisfactory responsiveness for 
high priority frames, CAN frames have a 
data field which is very small with respect to 
other popular fieldbus protocols. This 
implies that long messages have to be split 
into a sequence of smaller chunks (which 
are referred to as fragments) according to 
some fragmentation protocol, which is 
usually placed in the application layer [7, 8]. 
Fragmentation protocols perform all the 
operations needed to split the message, 
send each fragment into a separate frame 
and reassemble all the fragments at the 
destination node to rebuild the original 
message. 
Whichever the kind of the fragmentation 
protocol used, the resulting efficiency for 
exchanging messages is quite low. In the 
case of CAL/CANopen, for example, each 
fragment causes a pair of frames to be 
exchanged. This leads to an efficiency 
which is theoretically not better than 0.25. 
The major drawback in performing 
fragmentation at the application level, 
however, is that it has to be carried out in 
software and hence it consumes CPU time. 
Instead, a hardware implementation at the 
data-link level (communication controller), 
can lead to noticeably higher performances. 
An improvement of the transmission 
efficiency for the low priority messages 
(without penalties for the network 
responsiveness) can not be obtained by 
simply increasing the payload of the frame. 
A possible solution is to split the message 
into a sequence of 8 byte fragments, which 
are then sent sequentially by the transmit-
ting node. Each fragment is followed by a 
stop field, which consists of a stop bit 
preceded by a synchronisation sequence 
and followed by a stop delimiter. By 
overwriting the stop bit with a dominant 
value, each node in the network which has 
to transmit a higher priority frame can 
temporarily (and gracefully) stop the current 
message transmission, without discarding 
those fragments that have already been 
sent. 
A special BLOCK frame has been 
introduced in CAN+ to support the 
transmission technique described above 
whose data field is organised as a 
sequence of adjacent message fragments, 
as shown in Fig. 4. When the transmission 
of the block frame is stopped, the node 

which is currently transmitting the message 
adds (immediately after the stop field) the 
CRC, ACK and EOF fields to the bits 
already transmitted, as in the conventional 
CAN frames. Then, the transmission of the 
message will be resumed from the point it 
was abandoned (whole fragment boundary) 
when the bus becomes free again. In this 
way, a long message is sent as a sequence 
of block frames, each one consisting of a 
number of fragments. If the message 
transmission is never interrupted, only one 
block frame is effectively transmitted.  
If an error is detected, the error 
management mechanism of CAN stops the 
current frame transmission and ensures 
that both the transmitter and all the 
receivers are notified of the error. In this 
case all the fragments in the current block 
frame have to be re-transmitted.  
In CAN+ two kinds of fragment are used, 
that is intermediate (IF) and final fragments 
(FF). All the intermediate fragments contain 
exactly 8 data bytes, so that it is 
unnecessary to specify their length 
explicitly. The final fragment, instead, can 
contain 0 to 7 user data bytes and hence 
includes a 3-bit fragment length (FL) field, 
while the stop field is not present. In block 
frames, the conventional length field of CAN 
is replaced by two 4 bit-wide fields: the 
fragments number (FN) field contains the 
total number of intermediate fragments in 
the whole message, while the starting 
fragment (SF) field specifies the sequence 
number of the first fragment in the block 
and is used to resume an interrupted 
transmission. A value of SF equal to 0 
means the transmission of a new message, 
while any other value reminds that a 
message transmission previously inter-
rupted is being resumed. In the latter case, 
the SF value also shows the number of 
fragments of that message which have 
already been exchanged successfully in the 
previous transmission(s). 
A block frame can contain up to 15 
intermediate frames and exactly one final 
frame. In this way the L_BLOCK service 
can be used to transmit messages whose 
total length is up to 127 bytes. The 
L_BLOCK service does not worsen too 
much the responsiveness of a CAN 
network: the sending node, in fact, can be 
stopped after each (whole) fragment.  



As shown in Fig. 5, the block transmission 
of a message consisting of 127 user bytes 
results in an efficiency which is about 0.90 
in the best case (that is, when the block 
frame is never interrupted). In the worst 
case, that is when the transmission is 
repeatedly interrupted (and thus each block 
frame carries only one fragment) the 
efficiency decreases to 0.55. 
In addition, to ensure a fair bandwidth share 
out among the different nodes, a technique 
similar to the priority promotion mechanism 
discussed in [10] can be adopted, which 
dynamically modifies the priority of the 
different nodes and enforces an overall 
behaviour which is similar to the token-
based networks. 
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Fig. 5: Transmission efficiency of messages 

vs. message size. 

3.3 High priority notifications 
In fieldbus networks, a phenomenon which 
is known as priority inversion [9] could take 
place when the transmission of an urgent 
frame is delayed because of the current 

transmission of a lower priority message. 
This is due to the fact that the MAC 
mechanism is not pre-emptive and hence 
when a frame transmission is started it is 
always allowed to be taken to completion. It 
should be noted that the priority inversion 
problem is not relevant in the CAN networks 
because of the very limited frame size. 
To provide an extremely high responsive-
ness for very urgent interactions, the CAN+ 
protocol can be modified to allow the 
communication media to be pre-empted. In 
particular, a new L_ERROR service is 
provided to abort the transmission of the 
current frame on the network. In practice, 
this service initiates the transmission of an 
ERROR frame which corrupts (and hence 
stops abruptly) the current transmission. 
The L_ERROR service has two parameters: 
maximum priority (MP) and maximum 
remaining bytes (MRB). The error frame is 
effectively transmitted only if a frame is 
currently being exchanged on the network, 
the priority of that frame is (numerically) 
strictly higher than MP and the number of 
remaining data bytes to be sent is strictly 
greater than MRB (these information are 
known by each node in the network), so as 
to ensure bounded transmission delays 
without reducing the efficiency too much. If 
MRB is set to 0, for example, the frame can 
be stopped provided that the data field has 
not been completely exchanged yet. For 
efficiency reasons, the current transmission 
cannot be stopped if the CRC field is 
already being sent. 
In CAN+, the L_ERROR service is mainly 
conceived to interrupt the cyclic process 
data exchanges when small-sized very 
urgent notifications (critical alarms) have to 
be sent. Whenever possible (as specified 
by the MRB parameter), message transmis-
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Fragment  
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fragment data 
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ID 
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Seq. 
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Fig. 4: Format of the BLOCK frame. 



sions should be preferably interrupted 
(gracefully) by means of the block 
mechanism (that is, using the stop bit). 
A node needing to transmit an urgent frame 
as soon as possible has first to invoke the 
L_ERROR service in order to stop any 
possible current transmission of a low 
priority frame and, immediately after, to 
transmit the higher priority frame. 

4 Conclusions 
In this paper a new access technique has 
been introduced, which is mainly based on 
CAN but also inherits a number of good 
features from other kinds of fieldbus 
networks such as Interbus. The resulting 
CAN+ protocol has the same optimum 
responsiveness of the original CAN 
protocol, but ensures a higher efficiency for 
periodic data exchanges, which is compara-
ble to Interbus. Moreover, a particular 
message transfer technique has been 
conceived which ensures a transmission 
efficiency similar to Profibus for the long 
messages and enables a completely 
dynamic management of the available 
bandwidth. To give some figures, the CAN+ 
protocol has a throughput that, in the usual 
operating conditions found in a factory 
environment, outperforms CAN by a factor 
which is about 5 for cyclic data exchanges 
and 3 for message transmissions. 
In the near future, it is very likely that the 
cost of developing and producing network 
controller chips will decrease more rapidly 
than the cost of the physical communication 
supports, at least from the point of view of 
the distributed factory applications. Hence, 
networks which ensure an optimal use of 
the available bandwidth (even at the cost of 
a slightly more complex protocol) will 
probably be the preferred solutions. The 
substantial increase of the network 
performance of CAN+ enables to use the 
communication support as efficiently as 
possible and hence lower bit rates can be 
adopted on the network.  
CAN+ constitutes a proper superset of the 
CAN protocol and it is backward compatible 
with all the existing applications (not 
devices) developed for that protocol suite. 
Moreover, it should be noted that with a 
minimum effort (an intermediate 
compatibility software layer) most of the 
applications conceived for other fieldbus 
networks (such as Profibus, Interbus or 

WorldFIP) can also be adapted to rely on a 
CAN+ communication support. 
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