
Figure 1. Teleservice System Overview

CAN 1 CAN 2

CAN Tools/
Standard
Software

Internet/Intranet
TCP/IP

Gateway

Remote SystemService Center
Gateway

SSL

Teleservice of CAN Systems via Internet

Gerhard Gruhler 1,3, Gerd Nusser 1,2, Dieter Bühler 1,2, Wolfgang Küchlin 2

1 Institut für angewandte Forschung in der Automatisierung (IFA), Fachhochschule Reutlingen
2 Wilhelm-Schickard-Institut für Informatik (WSI), Universität Tübingen

3 Steinbeis-Transferzentrum Automatisierung (STA), Reutlingen

This paper introduces a system which offers the possibility to access remote CAN
devices over the Internet as if they were local. The system consists of at least two
identical gateways connected over the Internet. Each of these gateways is connected
to a CAN bus with at least one CAN device. This architecture offers the opportunity to
use locally installed standard CAN tools to maintain remote CAN devices, independent
from any higher layer CAN protocol which is used. There is a huge application
potential not only for automation components but also for diagnostic purposes in cars
and trucks.
In order to ensure secure information transfer over the Internet, the system encrypts
the transferred data on demand by using the secure socket layer protocol. Because
most of the system is written in Java, it is possible to reuse nearly the whole system
on different platforms.

1. Introduction

Today, fieldbus systems are in use not only in
industrial automation but also in service
equipment, in health care and even in a lot of
end-user products. The spectrum reaches from
production lines over building automation to
cars and
trucks and
many other
applications.
Worldwide
access to
these objects
(resp. their
built-in
devices)
independent
from their
geographical
position
would offer a
huge potential
for remote
control, remote diagnostics and maintenance
and even remote teaching1. The World Wide
Web (Internet) is, as the name applies, an
appropriate transfer medium because of its
world-wide extension at low costs. Fieldbus

1 The research project "Verbund Virtuelles Labor"
which is funded by the Baden-Württemberg
Research Ministry applies parts of the presented
technology for remote teaching by access to
physical devices.

systems may be used either in static equipment
(e.g. production line) or in mobile applications
(e.g. car). The technical progress makes it
possible to access the Internet from (nearly)
every geographical position either by wire or
wire-less.
As [1] points out, "remote monitoring, remote

control,
remote
main-

tenance,
servicing

and
customer
support,

are very
important

fields in
auto-

mation
industry
today".

There is
the need

to access process information over large
distances. Furthermore it would be most
attractive to access this information with

Fachhochschule/STA Reutlingen
Alteburgstr. 150
Phone: 0049 7121 271331
Fax: 0049 7121 25713
gerhard.gruhler@fh-reutlingen.de
http://www.fh-reutlingen.de/~www-sta/

standard tools and standard hardware with no
need of proprietary technologies. In fact "there
is a gap between traditional fieldbus systems
and Internet-based applications which has to
be overcome" [2].
To close or at least minimize the gap between
these network technologies there are three
solutions. First it would be possible to equip
fieldbus devices with an Ethernet interface,
which would result in higher costs because of
additional hardware (controller, wire, etc.) and
software (TCP/IP stack) requirements.
Secondly, replacing one technology with the
other would only be practicable when the
fieldbus technology would by replaced by
Ethernet. As far as CAN is concerned, this
would mean to ensure hard real time
capabilities on Ethernet which can not be
guaranteed without additional hardware and
another network topology (token ring,
switched Ethernet). At last, every technique is
used in the field where it is meant to be used
and the gap is closed by software resp.
hardware.
Our remote access system uses CAN on part of
the fieldbus and TCP/IP on part of the Internet.
The main reason behind this decision is to use
standard hardware and software components as
mentioned in [3].
The hardware setup consists of two standard
PCs each equipped with an Ethernet interface
and a CAN interface. The existence of a
second CAN bus is not compelling if the CAN
driver offers so called virtual channels (i.e.
data is not actually written to the hardware)
which can not be assumed a priori.
To keep the system small, portable and open,
we use free and standardized software
whenever possible. Except for the system
dependent parts (i.e. system driver software)
the system is written in Java. Besides its
platform independence, Java provides built-in
network capabilities. Furthermore the system
presented in this paper, can easily be used in a
small embedded system. The requirements for
the system consist only of an embedded Java
virtual machine, an Ethernet and a CAN
interface with appropriate drivers and protocol
stacks (i.e. TCP/IP, CAN).
As the main purpose of the Internet is to
transfer data from a specified source to a
specified sink with a specified protocol in a
user transparent manner, it is often depicted as
a black box. It’s hard to track down the route
data takes and which institutions are
responsible for specific subnets. We have to

consider that the Internet is not secure without
additional precautions. To accomplish
identification and secure data transfer, the
secure socket layer (SSL) protocol is used.
Figure 2 shows the major functions of the
CAN/Internet gateway used in Teleservice
Systems.

2 System Architecture Overview

The hardware setup consists of two standard
PCs (Intel Pentium, Windows NT) each
connected to a CAN with at least one CAN
device. The gateways are running as Java
applications in order to have access to system
specific hardware drivers.
The system is not limited to CAN or a specific
application layer protocol because TCP/IP is
only used as a transport mechanism. As
described in the following section, CAN can
be replaced by any other fieldbus offering a
corresponding interface.

2.1 CAN Communication

The following sections describe the low level
communication, shown in figure 3, in a
bottom-up manner, starting with the developed
system library (i.e. JCAN.DLL) used to
communicate with the system-dependent
driver software.

2.2 JCAN.DLL

The system-dependent driver software
supports primitive access to CAN, providing
simple open, close, transmit, receive and

Figure 2. Major functions of a
CAN/Internet gateway

CAN access

Encryption of messages
(optional)

CAN message filtering
(optional)

Internet/Intranet

CAN

secure communication

TCP/IP Access

U
se

r I
nt

er
fa

ce
(o

pt
io

na
l)

S
es

si
on

 m
an

ag
em

en
t

Figure 3. CAN communication level

JCAN, CANProtocol

Java Native Interface

JCAN Dynamic Link Library

System Driver Software

CAN

Network
Communication

CAN
Communication

CAN

Application LayerEthernet

Application

control (e.g. baudrate setting) functions.
The JCAN dynamic link library, as shown in
table 1, handles the following two main tasks:
first, it encapsulates the CAN driver, providing
an abstract, thread safe view of the net traffic
on CAN, on the other hand it is part of the
implementation of the Java CAN API, which

references the methods of the JCAN.DLL via
the Java Native Interface. Therefore the JCAN
dynamic link library offers a level of
abstraction to the system-dependent driver
software.
The main part of the JCAN dynamic library is
the so-called message manager thread, which
collects all CAN messages on the bus in an
infinite loop. The CAN messages are managed
with respect to their actual identifier. The
library can be configured dynamically to hold
specific message queues for each identifier.
When a new message appears on the bus, the
message manager retrieves the ID of the
message and checks if some Java instance has
subscribed (i.e. express some interest in
receiving a certain message with the
corresponding message identifier) for
messages with this specific identifier. In this
case, the message is stored in a queue (FIFO)
reserved for messages with this identifier. In
the other case the message is ignored.
A subscription for CAN messages takes three
arguments: the identifier, the length of the
message queue and the notification flag. The

value for the queue length parameter depends
on the characteristics of the messages. If the
message history is important and no message
must be missed, the queue length should be
chosen high enough to hold all messages until
they are read from outside the library, even if
the receive frequency is comparably high. If it
is not necessary to track all messages, a queue
length of one may be appropriate, resulting in
only the most recent message being available
at any time. If the queue overflows, the oldest
message is deleted.
The initDriver function initialises a message
channel with a given transfer rate.
To read and write CAN messages from and to
CAN, the receive (resp. peek) and transmit
functions are used. The receive function reads
the oldest available message from the queue
specified by the identifier id and removes the
corresponding message from the queue. The
peek function has the same functionality as
transmit without removing the message.
The message manager thread collects messages
which were previously specified by subscribe
and ignores further messages by unsubscribe.
The Java instance has the possibility to set the
queue size for these messages and to choose
between asynchronous notification and polling
techniques to read incoming messages. Since
unsubscribed messages are ignored, it is
possible to mask the bus traffic which is not of
interest.
The decision to implement this message
management in C++ results in a high
performance filtering on incoming CAN
messages, keeping the Java side of the CAN
communication package away from the time
critical aspects of the CAN message
management.

2.3 Java CAN API

The Java CAN API represents the Java part of
the CAN communication level. It provides
some classes and interfaces to transparently
access the hardware driver and therefore offers
another level of abstraction to the underlying
hardware. This results in an independent way
to access hardware from different vendors. Our
concept is suitable for all typical field busses,
but we will use CAN as our standard example.
The CanPort class, as shown in table 2,
provides the native method declarations for the
JCAN dynamic library and methods for the
CAN event handling. To access a CAN bus, a
Java instance simply needs a reference to a

Table 1. JCAN.DLL interface (extract)

Function Signature
initDriver
startMessageManager
stopMessageManager
transmit
receive
peek
subscribe
unsubscribe

(long bitrate, int channel, long timer)
()
()
(int id, int dlc, int flags, byte[] data)
(int id, byte[] data, long[] timeStamp)
(int id, byte[] data, long[] timeStamp)
(int id, int qLength, boolean bNotify)
(int id)

CanPort object which is further used to
communicate with CAN (resp. with the JCAN
library and the corresponding message
manager thread).
If asynchronous notification shall be used, the
Java instance need to implement the
CanPortEventListener interface (table 3) by
overriding the canEvent method and sign itself
as an event listener at the CanPort object using
the addEventListener method.

This technique is implemented according to
the observer pattern as described in [4] which
is a standard feature of Java.
If the message manager encounters a
subscribed message with the notification flag
set, all registered CAN event listeners are
notified by invoking their version of the
canEvent method. The CanPortEvent
argument passed to the canEvent method
contains information about the event type and
the event source so the registered Java
instances can react in an appropriate way, e.g.
call receive or peek to read a message from the
queue. The message format itself is
encapsulated in the CanProtocol package. The
CanProtocol package, as shown in table 4,
comprises classes for generic CAN layer 2
messages and CANopen layer 7 messages.

The latter will not be discussed within the
scope of this paper. The CanMsg class
encapsulates a generic CAN message with a 11
bit (CAN 2.0A9 or 29 bit (CAN 2.0B)

identifier, 8 bytes of data and the data length
code (dlc). A CanMsg is read resp. written by
the corresponding methods of CanPort.
In general, the classes provided by the CanPort
and CanProtocol packages in conjunction with
the JCAN.DLL offer a convenient way for
CAN communication.

2.4 Network Communication

The Teleservice System is designed as a
client/server architecture [5] using Java sockets
(class Socket, class ServerSocket) which are
based on TCP [6]. TCP provides a connection-
oriented, reliable, full duplex, byte stream
service [7]. Because sockets are based on the
transport layer of the ISO/OSI reference model
[8], they represent the lowest level of network
communication accessible from an application
program. The abandonment of a middleware
software layer, for example DCOM/OPC
technology ([9],[10]), the Common Object
Request Broker Architecture (CORBA [11]) or
Java RMI ([12]), benefits in very few system
requirements and few communication
overhead. However, it is possible to equip the
system with some kind of middleware
technology. This was already part of former
developments and is extensively presented in
[2].
To handle multiple requests at the same time,
the server was realized as a concurrent server
as depicted in figure 4. Each client request is
managed by a single Java thread. The problem
arising, when multiple threads want to access a
single CAN bus will be treated in section 3.

Besides the actual CAN message transfer, the
communication protocol between a client and a
server contains messages for user management
(e.g. login procedure), application management
(e.g. start message transfer), and message
management (e.g. message subscription).

Table 2. CAN port API (extract)

Class Method Signature
CanPort

addListener
removeListener
subscribeID
unsubscribeID
writeMessage
readMessage

(CanPortEventListener lsnr)
(CanPortEventListener lsnr)
(int id, int qlen, boolean notify)
(int id)
(CanMsg canMsg)
(CanMsg canMsg)

Table 3. CAN event handling API (extract)

Interface Method Signature
CanPortEventListener

canEvent (CanPortEvent event)

Class Method Signature
CanPortEvent

getEventSrc
getEventType

()
()

Table 4. CAN protocol package (extract)

Class Method Signature
CanMsg setId

getId
setData
getData

(int id)
()
(byte[] data)
(byte[] data)

Figure 4. Gateway as a concurrent server

Network
Communication

CAN
Communication

CAN CAN Communication

NetworkCommunication

Application user management
 client management

 message management
encryption/decryption

Client
Thread 1

Client
Thread n

ApplicationServices

Ethernet

As mentioned previously, the communication
between a client and a server can be regarded
as a stream of bytes. The classes responsible
for input (InputStream) and output
(OutputStream), resp. any derived classes,
offer methods to read and write a buffer of
bytes to sockets. To transfer a message from a
source to a sink, a buffer of bytes is written to
the output stream of the corresponding socket.
At the sink, the buffer is read from the input
stream. The further action is managed by the
application logic.
Because neither sockets, nor the streams used
for input and output, nor any of the underlying
layers modify the transferred buffer, it is
transferred in the same form as it is written.
Thus, anybody who listens to the data, has the
ability to interpret the messages and the
protocol used between client and server.
To ensure privacy, we have to take
precautions, which are discussed in the
following section.

2.5 Secure Network Communication

The great flexibility of TCP/IP has led to its
world-wide acceptance as the basic Internet
and Intranet communication protocol.
According to [13], information on the net can
be interfered in the following ways:
• Eavesdropping. Information remains

intact, but its privacy is compromised.
• Tampering. Information in transit is

changed or replaced.
• Impersonation. Information passes to a

person who poses as the intended
recipient.

The leading protocol for providing a secure
data transfer over the Internet/Intranet has been
developed by Netscape Communication
Cooperation and is called Secure Sockets
Layer (SSL). The SSL protocol, now
standardized as Transport Layer Security (TLS
[14]), supports peer authentication, data
encryption and data integrity. The connection
security provided by SSL has three basic
properties ([15]):
• The connection is private. Encryption is

used after an initial handshake to define a
secret key. Symmetric cryptography is
used for data encryption (e.g. DES, RC4,
etc.).

• The peer's identity can be authenticated
using asymmetric, or public key
cryptography (e.g. RSA, DSS, etc.).

• The connection is reliable. Message

transport includes a message integrity
check using a keyed MAC (message
authentication code). Secure hash
functions (e.g. SHA, MD5, etc.) are used
for MAC computations.

SSL operates on the socket interface used for
TCP, additionally supplied with peer
authentication and data encryption.
To maintain platform independence, we use a
Java package from a European vendor [16]
(because of export restrictions) based on the
"Java Cryptography Architecture" (JCA [17])
provided by Sun Microsystems, which offers a
framework (a set of interfaces) to access and
develop cryptographic algorithms. An
implementation of the JCA is called "Java
Cryptography Extension" (JCE [18]). The
package provides an implementation of the
JCA and an implementation of SSL sockets,
which can be used like standard Java sockets
except for additional initialisation steps. As far
as the communication between two systems is
concerned, the code stays the same. As before,
the data is transferred using input and output
streams. The major difference with use of SSL
sockets is, that the data which is written to an
output stream is encrypted and later decrypted
by the input stream. The different layers of the
network communication level are depicted in

figure 5.
Even though in the current system the type of
communication (standard or secure) must be
given at start up, it would also be possible to
change the communication behaviour
dynamically by the use of two communication
channels with different strategies.
To sum it up, the SSL protocol offers a high
degree of security ([19]) paired with little
effort and acceptable overhead ([20]).

Figure 5. Network communication overview

TCP/IP Layer

Ethernet

Network
Communication

CAN
Communication

Ethernet

Socket / SSLSocket

System Driver Software

Application Layer
CAN

Application

3. Teleservice system

We introduced the different gateway layers
from the hardware layer up to the network
layer. The Teleservice System comprises all
parts and adds some system (e.g. client
synchronisation) and user management
facilities. The Teleservice system consists of
two identical Java applications as depicted in

figure 6.
The behaviour of these applications differ in so
far as one application takes the role of a client
and the other takes the role of the server. The
corresponding behaviour has to be specified at
startup.
It is often not obvious which application plays
which role. We distinguish the following
different situations. Imagine a situation where
for example a service center waits until it is
connected by clients because of a problem. For
example there is a problem in a factory and the
responsable machine informs the service
center. In this case the service centre plays the
role of a server. Another case could occur
when a person wants to observe some remote
machines and therefore plays the role of a
client. The difference between these situations
is that in the first case the machine is
connected to the client and in the second case
it is connected to the server.
When a client connects to a server, it has first
to authenticate itself by username and
password. The supplied information is used to
determine system access and the corresponding
access rights (read, write, read/write). If the
authentication procedure was successful, the
client grants access to the system, otherwise it
will be rejected.
The login procedure is followed by a
subscription procedure where the client can
subscribe either to all or only to a subset of
CAN messages which will be observed. The

specified set is then transferred to the remote
system and passed to the message manager
thread as described in section 2.
After this initialization the following steps are
performed:
1. The message manager thread on the

remote system receives a message
according to the subscription mask and
passes it up.

2. The application takes the message, builds a
packet (buffer) and sends it over the
network.

3. The client receives the packet, extracts the
message and writes it to CAN.

Writing messages to a remote bus is treated in
the same way. As far as data transfer is
concerned, it can be chosen between secure
and standard communication at system start
up. The transfer of CAN messages from one
gateway to another is depicted in figure 7.

From the point of view of a standard
application, the whole process of transferring
messages from a remote machine to the local
machine is completely transparent. Such an
application observes only the local system
driver which is supplied by remote messages.
Thus the local application takes these
messages from the driver and acts with respect
to its strategy (e.g. message logging). When an
application writes messages to the driver, the
messages are transferred to the remote system
and are written to the remote system driver
software.
In addition, a Java applet can be used to access
devices on a remote system (user interface of
figure 2). This applet can be used in any
browser which supports Java (e.g. Netscape
Communicator, Internet Explorer). To use
applets, an additional webserver has to be
installed on the system which is connected to
the fieldbus.
The scenario of the initialisation process is the
same as mentioned before. Because of security

Figure 6. Teleservice System

Network level

CAN level

Internet/Intranet

CAN 1

GATEWAY

CAN 2

Network level

CAN level

GATEWAY

Client Server

Figure 7: Transfer of CAN Messages

Network
Comm.

CAN
Comm.

Internet/Intranet

CAN 1

App.

CANMsg CANMsg

Network
Comm.

CAN
Comm.

CAN 2

App.

restrictions of applets (sandbox model), it can't
access local resources and therefore it is not
possible to access the local bus. At the
moment, the applet supports remote user
management, message subscription and
message viewing.
The parallel access of multiple client to a
single system can be devided into user
management and message management. As far
as user management is concerned, at most one
client has write access but multiple clients
have read access. The message management is
treated by the JCAN dynamic library which
simply serialises the incoming requests.
On the basis of the implemented software
architecture it is little effort to implement
further applets and applications. In general, it
is possible to implement applets, which have
the same functionality as the common standard
tools to access remote devices. As an example,
we have already implemented an applet which
makes it possible to communicate with a
remote CAN bus using CANopen. This applet,
called "Java Remote CAN Control" supports
access to CANopen devices, the corresponding
device profiles, network management services
(operational, preoperational) and writing resp.
reading of SDOs. The system is available for
public access via [21].
The various configurations to access the
Teleservice System are depicted in figure 8.

The possibility to access either local or remote
CAN busses in a transparent manner offers a
great potential for further developments.
However, it must be considered that real time
behaviour is lost at the expense of the
flexibility and distribution of the system. This
disadvantage can be compensated if the system
has the ability to log messages in a specified
time interval. Upon expiration of this interval,
the messages may be transferred and analysed.
Perhaps it would even be possible to

"playback" the messages in real time and send
them to a local existent original assembly.

4. Summary and Outlook

In this paper we introduced a system which
offers opportunity to access remote CAN
busses as if they were local.
To close the gap between Internet and CAN,
the JCAN.DLL and the Java CAN API
developed for common access to CAN field
busses form a general basis for any Java
applications, hiding bus specific message
layout and protocol issues. High performance
message filtering and asynchronous
notification is supported to create a convenient
interface to the CAN bus traffic. Since only
standard libraries and packages were used, the
effort to adjust this system to different CAN
driver APIs or even different fieldbus drivers is
very small.
The main advantage of the client/server
communication using standard sockets is high
availability with low system requirements and
less overhead for communication.
To encrypt and decrypt data over the Internet,
the SSL protocol was used. With this kind of
protocol it is possible to establish secure
connections, ascertain authentication and
ensure originality of data.
Because most of the system, except the
interface to the system-dependent driver
software, is written in Java, it can be ported to
any operating system with a Java 1.1
compliant virtual machine with little effort.
The requirements could even be met by a low
cost embedded system, featuring a small Java
Virtual Machine equipped with CAN, an
Ethernet interface and appropriate protocol
stacks. The application spectrum reaches from
remote teaching over industrial machines to
buildings or even cars and trucks. For example,
a truck driver experiencing a breakdown in the
middle of nowhere, can use such a system
linked to a mobile phone to establish a
connection to the Internet to enable remote
access to the CAN devices built into the truck,
allowing a distant engineer to check the
vehicle for malfunctions.

References

[1] G. Gruhler, W. Küchlin, and Th.

Lumpp: „Accessing CAN-based
automation systems via the Internet“,
CAN Newsletter, vol.1, pp. 24-28,

Figure 8: Access to the Teleservice System

Network
Communication

CAN Communication

CAN

Application

System Driver Software

Java
Application

Standard
Tools

Java
Applet

Internet/Intranet

March 1998

[2] Th. Lumpp, G. Gruhler, W. Küchlin:

“Virtual Java Devices. Integration of
Fieldbus Based Systems in the
Internet”, Proc. of the 24th Annual
Conference of the IEEE Industrial
Electronics Society, IECON ’98, Aug.-
Sept. 1998

[3] G. Gruhler, Th. Lumpp, W. Küchlin:

“Zugriffskonzepte auf CANopen-
Geräte über das Internet/Intranet”, VDI
Berichte 1410, VDI/VDE-GMA und
CiA Fachtagung CAN in der
Automatisierung, pp. 77-89, 1998

[4] E. Gamma, R. Helm, R. Johnson,

J. Vlissides: “Design Patterns:
Elements of Reusable Object-Oriented
Software”, Addison-Wesley
Publishing Company, 1995

[5] Andrew S. Tanenbaum: "Modern

Operating Systems", Prentice-Hall
Inc., 1992

[6] J. Postel: "Transmission Control

Protocol", RFC 793, September 1981

[7] W. Richard Steven: "UNIX Network

Programming", Prentice-Hall, Inc.,
1990

[8] H. Zimmermann: “OSI Reference

Model – The ISO Model for
Architecture for Open Systems
Interconnection”, IEEE Transactions
on Communications COM-28, No.4,
April 1980

[9] Microsoft Corporation, DCOM

Technical Overview – White Paper,
1996

[10] OPC Task Force, OPC Overview. OPC

Foundation, Version1.0, October 1998
http://www.opcfoundation.org

[11] Object Management Group (OMG),

The Common Object Request Broker:
Architecture and Specification, Rev.
2.1, Aug. 1997

[12] Sun Microsystems, Java Remote

Method Invocation (RMI)

 http://java.sun.com

[13] Netscape Communications

Corporation: "Introduction to Public-
Key Cryptography", 1998
http://developer.netscape.com:80/docs/
manuals/security/pkin/contents.htm

[14] T. Dierks, C. Allen: "TLS Protocol

Version 1.0", RFC 2246, January
1999

[15] Netscape Communications

Corporation, The SSL Protocol
Version 3.0, Internet draft.

 http://home.netscape.com/eng/ssl3/ssl-
toc.html

[16] Institute for Applied Information

Processing and Communications
Graz University of Technology
(IAIK).
http://www.iaik.tu-graz.ac.at/

[17] Sun Microsystems: "Java

Cryptography Architecture"
http://java.sun.com/products/jdk/1.2/-
docs/guide/security/CryptoSpec.html

[18] Sun Microsystems, Java Cryptography

Extension (JCE)
 http://java.sun.com/products/jce/

[19] Bruce Schneier: "Applied

Cryptography: Protocols, Algorithms,
and Source Code in C", John Wiley &
Sons, Inc., 1996

[20] IAIK, “How fast is IAIK-JCE ?”,

http://jcewww.iaik.tu-graz.ac.at/jce/
howfast.htm

[21] "Java Remote CAN Control". Online

Internet demonstration of accessing
arbitrary CANopen devices.

 http://robo16.fh-reutlingen.de/doku/
Demo/InterCanDemo.html

