
- 1 -

HOW TO MEASURE DEVICENET PERFORMANCE

By
James H. Gross

This paper will explain how to measure performance on DeviceNet. Understanding the fundamental
performance attributes of a DeviceNet network is basic to achieving network design goals, optimum
performance and reliable operation. This paper will provide an overview of the methods, software and
hardware used at Rockwell Automation to measure DeviceNet performance.

What is performance?
For the purposes of this paper we will define
performance as follows:

Performance is that attribute of a network, which
restricts the ability of a device to respond to or
initiate a change in an I/O status or an explicit
message.

Why measure performance?
There are two very good reasons to measure
performance. The first is to verify design goals. Such
as new module performance, regression performance
after a firmware change and network response. The
second reason is to Analyze network problems.
Common network problems are; slow response,
Inconsistent performance and nodes dropping off the
network.

What is the goal?
Therefore, it should be stated that the goal of this
paper is to give you a basic understanding of how
performance on DeviceNet maybe measured and
how to analyze the information collected.

Fundamental DeviceNet measurements.

To be able to perform an analysis of DeviceNet there
are three concepts that should be understood: One,
CAN Signals - being able to view the DeviceNet
message packets on a digital oscilloscope. Two,
Understanding the difference between POLLED and
COS(Change of State) messages. Three, The effects
of message jitter.

CAN signals on the DeviceNet
Scope setup used to examine CAN Signal Levels.
Using a dual channel digital oscilloscope connect and
setup your scope as follows:
1. Connect channel A to the CAN-Hi signal line
(white).
2. Connect channel B to the CAN-Lo signal line
(blue).

3. Connect the scope signal ground to the CAN V-
(black).
4. Set Channel A&B to 1 volt per division.
5. Set the scope for triggered sweep on channel A.
6. Adjust the channel A&B reference cursors to be
on the same grid line.
7. Set the timebase to 50 usec.
8. Adjusted the trigger level to produce a stable
display.
Figure 1 is a screen capture from a digital scope
showing the CAN signals. Superimposed on the
screen capture are the CAN Signal Level standards.

COS/POLLED messges.
Figure 2 is the COS/Polled network setup.

V -

ÿ þ ý ü û ú ùÿ þ ý ü ø ÷ÿ þ ý ü û ú � � � � � � �ÿ þ ý ü ø ÷ � � � � � � �

Figure 1. CAN Signals

IB16

OB16

ÿþýü
� � �
� � �

�þ � �
� � �

BENCHMARK
PROGRAM

FLUKE A
105B
SCOPE B

� � � � �
� � �

� � � � �
� � � �

ÿ � � � � � � �
�ý �ý � � � � �

� � � � � � � � �

� � � � � �

� � � � � � �

Figure 2. Network Configuration

- 2 -

The Flex ADN is placed in the scan list as either a
COS or Polled device. An I/O COS is supplied by
a function generator to the input module bit 0.
Figure 3 shows the DeviceNet COS messages
versus the input module bit 0. Messages are only
generated when a COS occurs in the input data.

Figure 4 shows the DeviceNet POLLED messages
versus the input module bit 0. Polled messages are
generated constantly, independent of the changes
in the input value.

Effects of Message Jitter.
The delay between the I/O input and the
production of a DeviceNet message may not
constant. Figure 5, shows that the delay between
the application of a COS to the input module bit 0
and the actual generation of the DeviceNet
messages is not constant. Message jitter may have
several causes such as improper task priority
allocation, excessive operating system latency,
improper code design or incorrect processor speed
selection. Message jitter should be minimized.

A Software solution to measuring performance.
Even a software solution requires some hardware
and this paper assumes that a network interface
card, necessary drivers and programming software
is available. The interface to the card must be
capable of informing the application that a valid
CAN message has been received.
A software application to measure performance is
attractive for several reasons. First, there is a
minimum of intrusion on the network (the card
may operate in passive mode). Second, a minimum
of hardware is required, just a laptop and NIC. The
third attractive feature is portability, movement
from network to network is very easy.

A Software solution: Network loading.
Network loading (NETUSE) is a measure of the
density of messages on the network in percent of
available bandwidth. NETUSE is an important
performance measure because the traffic density on
the network will effect the ability of nodes to
transmit and receive messages.

NETUSE Equations:

Maximum Bits possible = Sample Time * Baud Rate
% NETUSE = (Bits received / Maximum Bits possible) * 100

NETUSE Variables:

Set up number of messages to sample (max_messages).
Set up message counter (message_count).
Set up start sample time (start_scan_time)
Set up stop sample time (stop_scan_time).
Set up bit counter (bit_count).
Set up most messages possible (best_messages).
Set up Baud Rate (baud_rate).
Set up percent net usage (net_use).
Set up average network use (avg_net_use).
Set up average net use counter (avg_net_use_count).
Initialize bit_count to 0.
Initialize max_messages to 128.
Initilaize message_count to 0.

ÿþýüûþúþùøúþù÷ öõô

� ü � � � �ø � � � � üþ � øùö ø� � � � ù ø � ö � � �þ øü � ø � � �

� � � ùþ õ � ø� � � ø � þ � � � � þ

� � � ýþ � ø� � �
� þ � � � � þ

Figure 3. COS Messages

� ü � � � �ø � � � �üþ � øùö ø� � � � ù ø� ö � � �þ øü � ø � � �

ÿþýüûþúþùøúþù÷öõô

� � � ùþ õ � � ø � ö � �ø � ö � � � � � ø � þ � � � � þ �

� � � ýþ � � ø � ö � � ø � þ � � ö � �þ ø � þ � � � � þ �

Figure 4. Polled Messages

Figure 5. Message jitter

- 3 -

Initialize baud_rate to either 125KB, 250KB or 500KB.
Initialize avg_net_use_count to 0.

NETUSE Algorithm:

Note: Entry is conditional on your Interface Card
indicating a valid CAN message has been received
and is available to be read.

START:
Read CAN message from Interface card.
IF message_count is equal to zero THEN
start_scan_time is assigned time stamp from
Interface card.
END IF
Read CAN_data_Length from CAN message.
bit_count is assigned bit_count + 47 +(8 * CAN_data_length).
IF message_count is greater than or equal to max_messages THAN
stop_scan_time is assigned time stamp from Interface card.
IF stop_scan_time is greater than start_scan_time THAN
time_to_scan is assigned the value stop_scan_time minus
start_scan_time.
ELSE
time_to_scan is assigned the value start_scan_time minus
stop_scan_time.
END IF
best_messages is assigned the value baud_rate times time_to_scan.
net_use is assigned the value word_count divided by best_messages
times 100.
word_count is assigned the value of 0.
message_count is assigned the value of 0.
avg_net_use is assigned the value of avg_net_use plus net_use.
Increment avg_net_use_count.
ELSE
Increment message_count
END IF
IF avg_net_use_count is greater than or equal to 10 THAN
avg_net_use is assigned the value of avg_net_use divided by
avg_net_use_count.
avg_net_use_count is assigned the value of 0.
avg_net_use is assigned the value of 0.
END IF
Net Use data is now available and may displayed as desired.
END:

A Software solution: Masters Produced Data
Rate. (MPDR)

MPDR is the rate at which a master can produce
I/O Poll/COS/Cyclic data, for Cyclic data MPDR
is a verification of the cyclic rate, that is consumed
by a slave. MPDR is an important network metric
because the maximum rate that the master can
produce data is directly related to how fast a
change in I/O value can occur.

MPDR Setup:

The Masters I/O Poll Command/Change of State/Cyclic message
value must be constructed. The 11 bit identifier is weighted:

10 9 8 7 6 5 4 3 2 1 0 – bit
1 0 destination MAC ID 1 0 1 - value

A value for the destination MAC ID(slave)is assumed to be entered.
The value of slave is assigned the value of slave, bit shifted 3 places
left.

The value mpdr_data_id is assigned the value of 0x400 bitwise or'd
with the value slave bit shifted 3 places left.
The value mpdr_data_id is assigned the value of mpdr_data_id bitwise
or'd with the value 5.
This maybe expressed as: mpdr_data_id = 0x400|(slave<<3)|5.

MPDR Variables:

Set up CAN Message holder structure(read_param).
Set up CAN Message Identity value (mpdr_data_id).
Set up number of messages to sample (max_messages).
Set up start sample time (m_prod_start_time).
Set up stop sample time (m_prod_stop_time).
Set up Master's produced time (m_prod_time).
Set up Master's produced minimum time (m_prod_min_time).
Set up Master's produced maximum time (m_prod_max_time).
Set up Master's produced message count (m_prod_count).
Set up Master's produced message average time (m_prod_avg_time).
Set up Mater's produced total messages time (m_prod_total_time).
Initialize max_messages to 128.
Initialize m_prod_count to 0.
Initialize m_prod_avg_time to 0.
Initialize m_prod_total_time to 0.

MPDR Algorthm:

Note: Entry is conditional on your Interface Card
indicating a valid CAN message has been received
and is available to be read.

START:
Read CAN message from Interface card.
read_param.Ident is assigned the value of the CAN Message Identifier
field.
IF mpdr_data_id is equal to the value of read_param.Ident THAN
IF m_prod_start_time is equal to zero THAN
m_prod_start_time is assigned time stamp from Interface card.
ELSE
m_prod_stop_time is assigned time stamp from Interface card.
IF m_prod_stop_time is less than m_prod_start_time THAN
m_prod_time is assigned the value of m_prod_start_time minus
m_prod_stop_time.
ELSE
m_prod_time is assigned the value of m_prod_stop_time minus
m_prod_start_time.
END IF
m_prod_start_time is assigned time stamp from Interface card
IF m_prod_time is less than m_prod_min_time THAN
m_prod_min_time is assigned the value m_prod_time.
END IF
IF m_prod_time is greater than m_prod_max_time THAN
m_prod_max_time is assigned the value m_prod_time.
END IF
IF m_prod_count is greater than or equal to max_messages THAN
m_prod_avg_time is assigned the value m_prod_total_time divided by
m_prod_count.
m_prod_count is assigned the value 0.
m_prod_total_time is assigned to value 0.
ELSE
m_prod_total_time is assigned the value m_prod_total_time plus
m_prod_Time.
increment the value of m_prod_count.
END IF
END IF
END IF
Master Produced Data Rate is now available and may displayed as
desired.
END:

A Software solution: Slave Produced Data Rate.
(SPDR)

- 4 -

SPDR is the rate at which a slave can produce
Change of State/Cyclic data, for Cyclic data SPDR
is a verification of the cyclic rate, that is consumed
by another device usually a master. SPDR is an
important network metric because the maximum
rate that a slave device can produce data is directly
related to how fast a change in I/O value can be
sent to a master.

SPDR Setup:

The Slave's I/O Change of State/Cyclic message value must be
constructed. The 11 bit identifier is weighted:

10 9 8 7 6 5 4 3 2 1 0 – bit
0 1 1 0 1 ---Source MAC ID--- - value

A value for the Source MAC ID(slave)is assumed to be entered.
The value slave_data_id is assigned the value of 0x340 bitwise or'd
with the value slave.
This maybe expressed as: slave_data_id = 0x340|slave.

SPDR Variables:

Set up CAN Message holder structure(read_param).
Set up CAN Message Identity value (slave_data_id).
Set up number of messages to sample (max_messages).
Set up start sample time (s_prod_start_time).
Set up stop sample time (s_prod_stop_time).
Set up Slave's produced time (s_prod_time).
Set up Slave's produced minimum time (s_prod_min_time).
Set up Slave's produced maximum time (s_prod_max_time).
Set up Slave's produced message count (s_prod_count).
Set up Slave's produced message average time(s_prod_avg_time).
Set up Slave's produced total messages time (s_prod_total_time).
Initialize max_messages to 128.
Initialize s_prod_count to 0.
Initialize s_prod_avg_time to 0.
Initialize s_prod_total_time to 0.

SPDR Algorthm:

Note: Entry is conditional on your Interface Card
indicating a valid CAN message has been received
and is available to be read.

START:
Read CAN message from Interface card.
read_param.Ident is assigned the value of the CAN Message Identifier
field.
IF slave_data_id is equal to the value of read_param.Ident THAN
IF s_prod_start_time is equal to zero THAN
s_prod_start_time is assigned time stamp from Interface card.
ELSE
s_prod_stop_time is assigned time stamp from Interface card.
IF s_prod_stop_time is less than s_prod_start_time THAN
s_prod_time is assigned the value of s_prod_start_time minus
s_prod_stop_time.
ELSE
s_prod_time is assigned the value of s_prod_stop_time minus
s_prod_start_time.
END IF
s_prod_start_time is assigned time stamp from Interface card.
IF s_prod_time is less than s_prod_min_time THAN
s_prod_min_time is assigned the value s_prod_time.
END IF
IF s_prod_time is greater than s_prod_max_time THAN
s_prod_max_time is assigned the value s_prod_time.
END IF

IF s_prod_count is greater than or equal to max_messages THAN
s_prod_avg_time is assigned the value s_prod_total_time divided by
s_prod_count.
s_prod_count is assigned the value 0.
s_prod_total_time is assigned to value 0.
ELSE
s_prod_total_time is assigned the value s_prod_total_time plus
s_prod_Time.
increment the value of s_prod_count.
END IF
END IF
END IF
Slave Produced Data Rate is now available and may displayed as
desired.
END:

Figure 6. is a screen capture of how the data maybe
displayed.

A Hardware solution: Direct I/O measurements

Although DeviceNet message performance is
important in analyzing a network, the actual bit
times are what really matters. Three bit timings will
be investigated, output bit turn-on time, input bit
turn-on time and wrap-around network response. A
PLC with a DeviceNet scanner and Discreete I/O
module will be used.

Output Bit Turn-on time:

Output Bit Turn-on time is the time measured from
the application of a change to the I/O Output Data
Table of the processor till the slave device’s output
bit is turned on. A ladder program generates a 30
ms square wave output to a DeviceNet device. The
output bit in the scanners discrete data table is
mirrored to an output bit in the discrete I/O module.
The setup for this test is shown in Figure 7. The
results of this test are displayed in figure 8. Which
is a capture from the digital scope. One use of this

Figure 6. Sample Data Display

- 5 -

test is to see the effect of adding nodes to the scan
list.

Input Bit Turn-on time:

The time measured from the application of a
change to an input bit on a device till that I/O
change is detected in the processor and the bit
placed in the Input Data Table. A ladder program
moves the input bit from the scanner's input data
table to an output bit in the discrete data table of an
output module. The setup for this test is shown in
Figure 9. The results of this test are displayed in
figure 10. Which is a capture from the digital scope.
One use of this test is to see how quickly a device
may put data into the processor following an I/O
change.

Wrap-Around Network Response Time:

The time measured from the application of a
change to an input bit on a device till that bit
change is observed at the output bit of a network
I/O device. Wrap around of the I/O bit change takes
place in the processor. The processor moves the
Input Data Table change to The Output Data Table.
The Wrap-Around response includes all network
and processor latencies such as, ladder scan time,
backplane scanner and I/O device response times
and any interscan delays that maybe set. Figure 11
is the setup for measuring the Wrap-Around
response. Figure 12. Shows the results of the
measurements.

IB16

OB16

ÿþýü
���

�þ��
� � �

�� � � �
� � �

��� �� �
��� ��þý��� ��

� � � �

� �� � � � � � �� � �� � � �� ��

� � � �� �� � � � � � �� � � �

DEVICENETÿþ�� ý��� �� ��� ���
�� � �
� � � � � �� ��� �� ��� ���

Figure 7. Output Bit Turn-on Time setup

� � ù � � ùø � � ù � øù � � �þ øû � � � � þ

� � ù � � ù ø�üù øö � ø � þýüûþ

� � ù � � ùø �üùøù � õ � � ö � øùü� þ

Figure 8. Output Bit Turn-on Time results

�þ� �
� � �

� � � � �
� � �

� �� �
� ��þý

�� � � �
� � � �

� � � � � � � � � � � � � � � �� � � � � � � � � � �

ÿþ� � ý�� �� � � � � � � �
� � � �
� � � � � � � � � � � � � � � � � �

� þýüûþøü� � � ù ø�üù

ûö � üþ � ø� � ù � øù � � �þ øü� � � ùø�üù

ü� � � ù ø�üùøù � õ � � � � øùü� þ

Figure 10. Input Bit Turn-on time results

�þ��
�� �

� � �� �
���

�� ��� �
�� � ��þý

ÿ� � ���� �
� �� �� � � � �

� � �� �� � �� � � � � � � �

�� �� �� �� �

- 6 -

PC Based DeviceNet Scanners
PC based scanner Output Bit Turn-on Time:

The use of PC based DeviceNet scanners present
special problems when attempting to perform
benchmarks. The main problem is the generation of
I/O data. In most cases some type of ‘soft’ PLC is
used. Another problem is finding a way to mirror
the I/O data bit out to the “real world”.

The ladder program shown in Figure 13, will
generate a change to the scanner’s data table and
mirror that I/O change to the serial port’s CTS bit,

actuated by the AHL instruction. The configuration
for this test is shown in Figure 14. The results are
shown in Figure 15.

PC based scanner Input Bit Turn-on Time

The setup for Input bit turn-on Time is shown in
Figure 16. Input Bit turn-on time is similar in
measurement to the Output bit Turn-on Time
except for the mirroring of the input data table bit
to the CTS bit using the AHL instruction. Figure 17
shows the results of the PC based Input Bit turn-on
Time measurement.

ÿþýüûþøü� � � ùø�üù

ÿþýüûþøö �ù � � ùø�üù

� õ � � � � õö � � � øõþ � �ö � �þ

Figure 12. Wrap-Around Network Response
results

Figure 13. “CTS” Ladder Program

IB16

OB16

ÿþýü
���

� �� � � � � �� � � � � � � � �
� �� ��

� � � � �
� � � �
� � �þý

ÿþ�� ý��� � � � � � � � �
�� ��
� � � � � � � � � � � � � � � � � �

� �� �� �� � � � � � � � � ��

SL5
� ��
� � �
� ��

� � � � � �� � �
� �� � � � � � � � � � �

� � � �� � � ��

Figure 14. PC Based Scanner – Output Bit Turn-on
Time setup

ÿ������ ��� �� �� �� ��� ���úù÷�ÿ÷�

���� ���� � � � � � �� ��

÷� � � � � ��� ���� � �� �� ���� �

Figure 15. PC Based Scanner – Output Bit turn-on
Time results

� � � � � � � �� � � � � � � � �
� � � � �

� � � � �
� � � �
� � �þý

� � � � � �
� � � � � � � � �

SL5
� � �
� � �
� ��

� � � �� � � � �

ÿ� � � � � � �
� � � � � � � � �

- 7 -

Real performance investigations that have been
done.

MPDR for COS.

An investigation was conducted to determine the
maximum rate at which a master will produce
messages to the slaves via DeviceNet without
missing a COS. In this investigation, up to a 27
node network was tested. The investigation began
with the scanner and a single node. Figure 18
shows the test setup. The subsequent nodes were
attached to the network and added into the scan
list. The failure of the master, that is when the
master missed a state change, was determined to be
2x the recorded minimum value. The digital scope

and the benchmarking program was used to
determine the failure. The heartbeat of the nodes
was set at 5000ms and there was no ack. All
measurements were taken at node 3. An ladder
program was created to be the pulse generator for
the investigation. Figure 19 are the results of the
test.

Analysis of results.

The chart is clear, as you increase node count the
ability of the master to send data to the nodes
decreases.
Please note the flatting of the NETUSE curve. This
flatting will be addressed in the next investigation.

New scanner performance – MPDR POLLED.

An investigation was conducted to determine the
rate at which a master will produce messages to the
slaves via DeviceNet using POLLED mode. In
this investigation, up to a 62 node network was
tested. The investigation began with the scanner
and a single node. The test setup for MPDR was
used. The subsequent nodes were attached to the
network and added into the scan list. As this was a
test to determine performance of a new product
there was no failure criteria. Only the
benchmarking program was used to measure the
MPDR All measurements were taken at node 1. An
ladder program was created to be the pulse
generator for the investigation. Figure 20 shows
the results of the test.
Analysis of results.

This chart (Figure 20) clearly shows that this
scanner has some performance problems.
Assuming that the code for the module has no
software bottlenecks and there are no other

ÿ� �ú � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �� � � � � � � � � �� � � � � �

ü� � � ùø�üùøù�õ � � � � øùü�þ

Figure 17. . PC Based Scanner – Input Bit turn-on
Time results

Measured COS Rate vs. Max. % of Net Use

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Number of Nodes

M
ill

is
ec

on
ds

0

5

10

15

20

25

%
of

N
et

U
se

COS Rate

Max. Net Use

Figure 19. Results of MPDR COS test

IB16

OB16

ÿþýü
���

�þ��
���

�����
� � �

� � � �� �
� � � � �þý

BENCHMARK
PROGRAM
pc based
monitor tool

DEVICENET

1747-
OB16

FLUKE
SCOPEMETER

Figure 18. Setup for MPDR COS measurement

- 8 -

external factors that are affecting performance,
what is the cause? By looking at the NETUSE plot
(bottom trace) it becomes clear that the scanner just
can not get data on to network fast enough.
Therefore the conclusion is that the scanner is
hampered by an under powered processor.

Wrap around network response for COS.
Wrap around means that the processor copies the
input discrete datatable to the output discrete
datatable. The stimulus/response measurements for
a wrapped DeviceNet network are composed of the
time the network takes to respond to a COS at a
node input, send the COS message to the scanner,
process the data and return the information to the
node’s output. This network response time is the
most complex and accounts for all latencies of a
specific DeviceNet network. This investigation
was conducted to determine the wrap around
network response time for a pure COS network
consisting from 1 to 27 nodes. Figure 21 shows the
setup for the wrap around network response test.
Figure 22 shows the results of that test.

Analysis of results.

From the chart (Figure 22) the following
conclusions can be drawn: That the devices will
communicate no faster then the MIN network
response value and that they will not be slower then
the MAX network response value. That adding
nodes gives a linear increase in response time.

Every network is different:

That every network is different is a fundamental
principal of performance analysis. Every network
presents unique configurations of devices, cable
lengths, scanners, interface cards, node addressing,
baud rate, Polled, Change of State/Cyclic, strobe
operation and peer devices. However, experience
with one network may allow general conclusions
about other similar networks to be drawn.

Summary:

This paper has explained how to measure
performance on DeviceNet. Shown the fundamental
performance attributes of a DeviceNet network as
basic to achieving network design goals, optimum
performance and reliable operation. This paper has
provided an overview of the methods, software and
hardware used at Rockwell Automation to measure
DeviceNet performance.

Rockwell Automation
1 Allen-Bradley Drive
Mayfield Heights, Ohio USA

Figure 22. wrap around response test results

IB16

OB16

ÿþýü
���

�þ��
���

�����
���

������
�����þý

ÿ�������
�ý�ý�����

ÿþ�� ý
���� ý� ý�ý�

�ý�� ���ý

���� �þ��

Figure 21. Setup for wrap around response test

New scanner Performance

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1 7 13 19 25 31 37 43 49 55 61

Number of Nodes

Mil
lis
ec
on
ds

MPDR AVG(ms)
MPDR MIN(ms)
MPDR MAX(ms)
Net Use %

Figure 20. MPDR for a new product

- 9 -

(440)646-3943 voice
jhgross@ra.rockwell.com
www.cle.ab.com

