
New Generation of CAN Controllers
Optimized for 8-bit MCUs

Paul Kinowski, Bertrand Conan
ST Microelectronics, Rousset, France

With the introduction of OSEK and the increasing number of ECUs in car’s body,
automotive network requirements have changed significantly in the last few years.
8-bit micro controllers are and will stay widespread in a majority of automotive body
applications.
While a wide variety of powerful CAN controllers are available on the market for 16-
and 32-bit micro controllers, 8-bit micro controllers still have to spend to much CPU
resources for CAN message management.
This paper presents a new generation of CAN controllers optimized for 8-bit micro
controllers and developed to meet body applications’ needs.

1. Introduction
1.1 Evolution of automotive network
Since several years CAN is the world wide
standard automotive communication
protocol. Well established in power train
applications in its high speed version, CAN
is now used to connect high number of
ECUs in car’s body. This body network -
known as low speed CAN - brough with its
introduction major changes.

Standardized Higher Layer
Today automotive manufacturers and their
suppliers are going one step further
towards standardization integrating the
OSEK software modules on each ECU.

Hierarchical architectures
To master the complexity caused by the
increasing number of ECUs in car’s body,
several networks and sub-networks are
required. This limits the number of nodes
connected to one network, but requires
more nodes with simple gateway function.

Low-end communication protocol
Local sub-networks - e.g. within one door
module - does not need the full multi-
master, speed and robustness features of
CAN. Therefore the communication
protocol LIN has been introduced as low-
end protocol.

1.2 Impact on CAN Traffic
All changes presented before have an
impact in terms of CAN message traffic.

Application Messages
Even if the information transmitted by each
ECU did not increase significantly, the
raising number of ECUs in body
applications led to a drastic raising of the
CAN traffic.
Sometimes the same ECU may be used in
several locations of the car - for instance
for the right and for the left door module –
thus a node must be able to handle more
message identifiers as the application
itself would really require.
A similar effect occurs when the same
ECU is planed to be implemented in
different car models or versions, then the
number of identifiers the node has to
handle will increase.

Network Management Messages
In addition to the application messages,
management messages like OSEK
Network Management Direct are
necessary to configure at start-up time the
network, to control the bus when the
nodes enter and exit sleep mode, to
monitor the node while running and to
handle bus-off condition. This distributed
NM requires the implementation of the
OSEK-NM software on each ECU, which
has to monitor the NM messages of all
other nodes.
This NM is based on the token ring
method and each node has its own
address. The source and destination
addresses are coded in the identifier of the
CAN message. This means that there are

as many identifiers needed for the NM as
nodes in the network.

Diagnosis Messages
For diagnosis purposes each ECU must
be accessible to external diagnosis tools.
According to ISO 15765-1 and 2 these
diagnosis services are now implemented
via CAN. These services require their own
CAN messages.

1.3 Impact on CAN Controllers
As the introduction of networks modified
strongly automotive application
implementations, respectively modern
network architectures changed the
requirements to the CAN controllers.
The paragraphs before showed clearly
that the resource requirements increased
in particular on the receiver side:
§ Huge number of identifiers on the bus
§ High number of identifiers to handle
§ Various types of messages

Nothing New In 8-bit CAN World?
While many CAN controllers for 16- and
32-bit micro controllers have been recently
developed in order to satisfy these new
requirements, most of the CAN controllers
implemented on 8-bit micro controllers do
not provide the required hardware to
support these new functions efficiently.
Therefore software solutions are usually
implemented consuming CPU resources
and making the application less
independent from the CAN bus traffic.

Task Of The Whole CAN Interface
Considering the receiver part of the CAN
interface following tasks have to be
performed:
• Message checking, error handling and

acknowledgement. This task is
completely done by the CAN protocol
implemented in all CAN controllers

• Message filtering signals relevant
receptions to the application and
discards the other ones. This task is
partially done by hardware but
software filtering is often needed. The
CPU resources consumed for software
filtering depends on the CAN bus
traffic. This means that the ECU
performance is influenced by events
not related to the application. This can
make the modification of an entire

system or the integration of the ECU in
another network very critical.

• Identifier recognition. Once a message
has passed through the filters its
content must be identified in order to
compute the destination address the
data must be stored to.

• Signals extraction. To optimize the
bandwidth usage of the CAN bus, the
signals are concatenated to have more
data transmitted in each message.
Thus on message reception the
application must extract the signals it is
interested in.

• Signals storage in RAM

2. CAN Controller Solutions
2.1 Trade-off between costs and

efficiency
Nowaday CAN controllers can be
classified in two main families:
• BasicCAN
This approach provides only few
mailboxes for message transmission and
reception. This solution allows very
compact implementations on silicon.
Advantages:

o Really cost effective and
therefore well suited to 8-bit
micro controllers

Drawbacks:
o Requires CPU resources for

filtering, identifier recognition
and signal storage

o High software real-time
constraint on message
reception

• FullCAN
This approach provides more mailboxes
as messages to handle. In the past 16
mailboxes was sufficient, today 32 or 64
are standard.
Advantages:

• Autonomous message filtering
• Static identifier per mailbox

Drawbacks:
• 16 mailboxes not sufficient for

body applications
• 32 mailboxes to expensive for

8-bit micro controller
• Static usage of mailboxes not

efficient in body application.

3. BxCAN and beCAN the new
CAN solutions

As mentioned previoulsy for cost efficiency
reasons an 8-bit micro controller cannot
afford to have a huge fullCAN controller
with 32 mailboxes. Therefore new ST’s
solutions are based on a BasicCAN
architecture, which has been extended to
fulfill body application requirements.

3.1 bxCAN Main Features

The basic extended CAN - called bxCAN -
supports:

• CAN protocol version 2.0 A, B Active

• Bit rates up to 1Mbit/s at 8MHz

• Three transmit mailboxes

o Priority by identifier or FIFO

• Two receive FIFO with three stages
each

• Eight scalable filters
o Associable to FIFO 0 or 1
o Identifier list feature
o Filter match index

Mailbox 2

Mailbox 1

765

CAN 2.0B Act ive Core

Mailbox 0

Transmission

Acceptance Filters

Tx Mailboxes
Master Control

Scheduler

Master Status

Transmit Control

Transmit Status

Transmit Priority

Receive FIFO

Error Status

Error Int. Enable

Tx Error Counter

Rx Error Counter

Diagnostic

Bit Timing

Filter Mode

Filter Config.

Page Select

Interrupt Enable

Mailbox 0
1

2

Receive FIFO 1

4321
Filter 0

Mailbox 0
1

2

Receive FIFO 0

Figure 1: bxCAN Block Diagram

3.2 CAN Core
Although the CAN core is the heart of any
CAN controller this is also the most
common part. This means that all CAN
cores have to be compliant with the CAN
standard and from an application point of
view do not differ from each other. The
processor interface providing the
mailboxes the filters etc. must meet the
application requirements and is subject to
innovations. Therefore bxCAN is based on

the BOSCH CAN core of the C_CAN
product.

3.3 Transmission Handling

Three transmit mailboxes are provided to
the application to set-up messages for
transmission.

Three mailboxes reduce software queuing
and allow deterministic transmission. The
transmission Scheduler decides which
mailbox has to be transmitted first
according to the priority rules.

Transmit Priority Rules

BxCAN provides two modes for the
transmit priority:

• In identifier mode when more than one
transmit mailbox are pending, the
identifier of the message stored in the
mailbox gives the transmission order.
The message with the lowest identifier

value has the highest priority according
to the arbitration of the CAN protocol.

• In FIFO mode the priority order is
given by the transmit request order.
This mode is well suited for segmented
transmission.

3.4 Message Filtering

One 32 Bit Filter

Two 16 Bit Filters

One 16 Bit / Two 8 Bit Filters

Four 8 Bit Filters

CFxR0
CFxR4

CFxR1
CFxR5

CFx R2
CFx R6

CFxR3
CFxR7

CFxR0
CFxR2

CFxR1
CFxR3

CFxR4
CFxR6

CFxR5
CFxR7

CFxR0
CFxR2

CFx R1
CFx R3

CFxR4
CFxR5

CFxR6
CFxR7

CFxR0
CFxR1

CFxR2
CFxR3

CFxR4
CFxR5

CFxR6
CFxR7

FSCx = 3

FSCx = 2

FSCx = 1

FSCx = 0

Filter Scale Configuration Filter Scale Config. Bits1

Identifier
Mask/Ident.

Identifier
Mask/Ident.

Identifier
Mask/Ident.

Identifier
Mask/Ident.

Identifier
Mask/Ident.

Identifier
Mask/Ident.

Identifier
Mask/Ident.

Identifier
Mask/Ident.

Identifier
Mask/Ident.

ST ID10:3 STID2:0 RTR IDE EXID17:15 EXID14:7 EXID6:0 Bit Mapping

ST ID10:3Bit Mapping

ST ID10:3 STID2:0 RTR IDE EXID17:15

Identifier
Mask/Ident.

Bit Mapping

Figure 2: Filter Scale and Configuration

One of the bxCAN’s key improvements is
the extended filter mechanism avoiding
any message filtering by software. This
pure hardware filtering makes the CPU
performance independent from the CAN
bus traffic. Hardware filtering:

§ Saves CPU resources required for
software filtering

§ Eases the software development
evaluation, as even if the CAN bus
traffic is not well defined at the

beginning of the project, changes will
not impact the CPU behaviour

§ Eases the integration of this ECU in a
new system

To fulfil this requirement the bxCAN
Controller provides eight configurable and
scalable filters to the application, in order
to receive only the messages the
application needs.

Scalable Width

To optimise and adapt the filters to the
application needs, each filter can be
scaled independently. The following
combinations are possible:

§ One 32 bit filter applying to the
STDID[10:0], IDE, EXTID[17:0] and
RTR bits.

§ Two16 bit filters applying to the
STDID[10:0], RTR and IDE bits.

§ Four 8 bit filters applying to the
STDID[10:3] bits. The other bits are
considered as don’t care.

§ One 16 bit filter and two 8 bit filters.

Further more a filter can be configured in
mask mode or in identifier list mode.

Mask mode

In mask mode the identifier registers are
associated with mask registers allowing
specifying which bits of the identifier are
handled as “must match” or as “don’t
care”. This mode is well suited to select a

group of identifiers, for instance network
management messages.

Identifier List mode

In identifier list mode the mask registers
are used as identifier registers. Thus
instead of defining an identifier and a
mask, two identifiers are specified
doubling the number of configurable single
identifiers. All bits of the incoming identifier
must match with the bits specified in the
filter registers. This mode is well suited for
application messages as their identifiers
are quite “randomly” distributed.

Filter Configuration

While the scale and mode configuration
must be done during the initialisation of
bxCAN, the value of the identifiers and
masks registers can be modified on the fly.

3.5 Reception Handling

Ident if ier List

Message Discarded

Ident if ier & Mask

Identifier 0
Identifier 1
Identifier 2

Identifier n

Identifier n+1
Mask

Identifier n+m
Mask

Identifier

Message Received

Ctrl Data

Ident if ier #2 Match
Message
Stored

Receive FIFO

No Match
Found

Figure 3: Message Filtering and Storage

For the reception of CAN messages
bxCAN provides two FIFOs. Each FIFO
can store 3 complete CAN messages
without CPU intervention. Each filter can
be independently associated to FIFO 0 or
FIFO 1.

This structure reduces the real-time
constraint on message reception on the
application side. In order to save CPU
load, simplify the software and guarantee
data consistency, the FIFO is managed
completely by hardware. The application
accesses the messages stored in the
FIFO through the FIFO output mailbox.

Message Prioritisation

A drawback of the FIFO architecture is
that at reception time the application does
not know the level of priority of this
message. Thus all messages have to be
handled with the same “urgency”. To
address this issue bxCAN provides two
independent FIFOs. This allows
differentiated handling for high priority
messages and non-critical messages. This
feature contributes to reduce the real-time
constraint on the application.

Filter Match Index
Once a message has
been stored in the
FIFO the application will
transfer the data to the
RAM. BxCAN provides a
Filter Match Index, FMI,
corresponding to the index
of the filter the message
passed through. The FMI
is stored in the FIFO with
the message received.
Because of their wide
spread distribution, CAN
identifiers cannot be
immediately used as an
index to the destination
location of the data.
The FMI provides a means
to access a receive
message table directly.

Valid Message

A message is considered
as valid when it has been
received without error until

the last but one bit of the EOF field. And it
passes through the identifier filtering
successfully.

FIFO Overrun

The CAN core has its own message buffer
and starts transferring the message to the
FIFO once the message is considered as
valid. Thus an overrun condition will occur
if four valid messages have been received
in the same FIFO but not handled by the
application. Furthermore this mailbox in
the CAN core guarantees that no
erroneous message will overwrite a
correct one already stored in the FIFO.

3.6 beCAN Main Features

The basic enhanced CAN - called beCAN
- supports:

• CAN protocol version 2.0 A, B Active

• Bit rates up to 1Mbit/s at 8MHz

• Two transmit mailboxes

o Priority by identifier or FIFO

• One receive FIFO with three stages

• Four scalable filters
o Identifier list feature
o Filter match index

Figure 4: beCAN Block Diagram

CAN 2.0B Active Core

Mailbox 0

Transmission

Filter
1

2
3

Mailbox 1

Mailbox 0
1

2

Receive FIFO

Acceptance Filters

Tx Mailboxes
Master Control

Scheduler

Master Status

Transmit Control

Transmit Status

Transmit Prio

Receive FiFO

Error Status

Error Int. Enable

Tx Error Counter

Rx Error Counter

Diagnostic

Bit Timing

Filter Master

Filter Config.

Page Select

Interrupt Enable

0

The beCAN is based on the same FIFO
and filter concept as bxCAN but targets
applications requiring less communication
resources. This leads to a reduced
processor interface functionality.

4. Validation
BxCAN and beCAN are based on the CAN
core of BOSCH’s C_CAN controller.
This approach limits the development risk
reusing the huge experience BOSCH
gained during more than one decade of
CAN controller development.
To guarantee the compliance of the
BOSCH’s CAN core with the CAN
standard, the C_CAN has been validated
according to the ISO standard 16845
„CAN Conformance Testing“. The
validation has been parformed by the c&s
group led by Prof. Dr. W. Lawrenz located
in Wolfenbüttel, Germany. C&s is since
several years a world wide well accepted
organisation for CAN controller validation.

5. Conclusion
These two new CAN controllers bxCAN
and beCAN have been designed to meet
the requirements of today’s and future
automotive body applications.

In particular filtering of CAN messages -
this CPU resources consuming and
difficult to evaluate task - has been
optimized by the implementation of the
„identifier list“ concept and the increased
number of filters. Free from the filtering
task the CPU can completely focus on the
application tasks.

With eight filters and two independent
receive FIFOs bxCAN can easily handle
high number and different types of well
selected messages. This is an ideal CAN
interface for decentralized gateways and
all applications with high communication
requirements.

STMicroelectronic
Z.I. de Rousset
BP - 2 13016 Rousset Cedex - France
Phone: +33 442685854
Fax: +33 442688993
e-mai: paul.kinowski@st.com
website: www.st.com

