
Dynamic Device Management and Access based on
Jini and CAN

Dipl.-Inform. Gerd Nusser1,2 Prof. Dr.-Ing.Gerhard Gruhler2,3

1 Wilhelm-Schickard-Institute for Computer Science (WSI), University of Tübingen
2 Institute for Applied Research (IFA), University of Applied Sciences Reutlingen

3 Steinbeis-Transfercenter Automation (STA), Reutlingen

In this paper, we introduce an object-oriented client-server system which is primarily
based on Jini and CAN, where Jini is used as a middleware architecture which offers
devices and their services to a network, such as the internet. The dynamic integration
of services and the feasibility of network pluggable devices are the major benefits of
using Jini. As Jini offers the ability to move code over a network, it is possible to use
device-specific application code and device specific options dynamically. The
application to access a specific device is transparently transferred to the client.
For demonstration purposes a prototype to access CANopen devices over Jini was
developed. The client, a PDA (personal digital assistant) with a small embedded Java
Virtual Machine is used to access CAN devices connected to an embedded Java
system called TINI. As nowadays no devices directly supporting CAN and Jini are
available, so called proxies are used to tie up the systems to the Jini community.

1. Introduction

The availability of network-based systems,
like the Controller Area Network (CAN),
have changed traditional automation
systems in a variety of ways. In the past,
these kind of networks were closed
entities, which in some cases is inevitable
(e.g. in mission or life critical systems), but
the need for
serviceability
and therefore
an external
interface gets
more and
more
important. It is
necessary to
maintain
systems
locally as well
as over a long
distance.
Therefore the
need for an
open service and management
infrastructure, by means of diagnostics, is
immanent.
Additionally, the way we think about
systems will change and “the number of
actively and co-operatively interacting
parties in the internet such as traditional

increase even more” [2]. Furthermore, the
need for integrating systems in the overall
infrastructure of a company will be as
much important as managing and
accessing these systems over a large
distance where the Internet can serve as
“an appropriate transfer medium” [1]. To
interface traditional systems like CAN to
the internet we need a dedicated instance

(a gateway)
like a personal
computer as
described in [3]
or an

embedded
device with
CAN and an

Ethernet
interface. The
fact that
devices with an

additional
“Ethernet
interface

results in
higher costs” still holds, but gets less
expensive like the embedded system
shows, which is presented in section 3.
The availability of low cost embedded
devices with TCP/IP and a Java Virtual
Machine opens a new world to the
previously mentioned closed network

TINIProxy

CAN
Device

TINI

CAN

PDAProxy

Jini Client

Lookup
Service

CAN
Device

Figure 1 : System Overview

new world is Jini, which is a distributed
system “allowing co-operating devices,
services, and applications to access each
other seamlessly, to adapt to a changing
environment, and to share code and
configuration transparently” [4].
The most popular example of Jini is the
following. If someone links a Jini-enabled
laptop to the network of a Jini-enabled
conference room the laptop will
automatically find the services of the
conference room, like for example a print
service and the laptop will automatically
download any required drivers and be able
to use the print service. If you go into
another office, the services of the
conference room discard and the new
office services are discovered.
The significant benefit for the user are the
dynamic integration and use of Jini-
enabled services resp. devices. The user
doesn’t have to install any device specific
software or driver, as the code, to use a
specific device, is downloaded
dynamically. How can devices on a
Controller Area Network benefit from Jini ?
The general ideas of services in Jini and
devices on CAN are quite similar. Devices
on CAN are plugged together with the goal
to fulfil some kind of control. These
devices share and exchange information
over the network. Spoken in terms of
services, each device is a special kind of
(hardware) service, which offers its
services to other devices (and services) on
the network. An I/O-module for example
offers the service to set its output lines
and to read its input lines. Each module
has some configuration data and a well
known interface (i.e. communication
protocol). As far as the application layer
protocol CANopen is concerned, the
interface comprises among other things
service data objects (SDO) and process
data objects (PDO) to exchange
information.
The potential impact of Jini is compelling
and as stated in [16] “Jini is here to give
an object-oriented interface to the
computer of the future; federations and
services connected by a network”.
In the following section we give a short
introduction to the Jini technology. Section
3 gives an overview of the system’s hard-
and software architecture. Finally, an

outlook on the future potential of Jini is
given.

2. Jini Technology

The most important concept of Jini are
distributed services. A service can be
either a piece of software, hardware or a
combination of both. A collection of
services on a network is called Jini
community or djinn. The centre of a Jini
community is the Jini Lookup Service [8].
The lookup service itself is a Jini service
and serves as a repository of services.
The Jini Lookup Service Browser, depicted
in figure 2, is part of the Jini
implementation from Sun Microsystems
and can be used to browse and manage
currently registered services. Figure 2
shows the service ServiceRegistrar, which
represents the Jini lookup service, along
with the corresponding service item.

The Jini discovery and join protocols [7]
enables services to locate and to join a
lookup service. During the join process a
service object (or service proxy), and
optionally some attributes, are stored by
the lookup service. An entity which wants
to use a particular service first searches
for a lookup service and requests all
services which map a particular type. If
such a service exists, the service object is
downloaded to the requesting entity. “This

Figure 2: Jini Lookup Service Browser

devices without doing any explicit driver or
software installation” [13].
Because “the ability to dynamically
download and run code” is part of “the Jini
architecture” it is assumed “that each Jini
technology-enabled device has some
memory and processing power” [6].
This includes that devices which want to
participate in a Jini community have some
processing power to run a Java Virtual
Machine (JVM) and memory to store the
Java classes. The Jini Device Architecture
Specification [9] describes three different
approaches for implementing a Jini service
in hardware. The first one describes
devices with resident JVMs, which are
capable of running a full JVM including
any resource necessary to participate in a
Jini community. This approach results in
higher costs, because of the existence of a
microprocessor running the JVM and
some memory to store the Java classes.
The second approach is concerned with
devices using specialized Virtual
Machines. The main idea is to implement
only interfaces to the discovery and lookup
services and some other functionality. This
specialized JVM would result in limited
functionality, but would be outweighed by
the simplicity of such a device.
The last approach allows multiple devices
to share a full JVM which serves as a
proxy to the Jini community. With this
approach, a group of devices is connected
to an additional device either physically or
over the network. Such a device is called
Jini device bay which provides power, a
network connection, and a processor
running a JVM. As part of the registration
of a new device at the device bay, the
new device would tell the bay where to
find the Java code needed to use the
device. Upon registration at a Jini
community, this code would be uploaded
to the lookup service. The protocol used
between the bay and the devices is not
specified. With this approach, the devices
themselves don’t need additional
hardware (CPU, memory), but there must
exist an additional hardware device which
manages the additional proxy functionality.
Sun Microsystems’ implementation of Jini
requires the Java 2 Standard edition,
because of the Remote Method
Invocation (RMI) activation framework and

some classes which are not available prior
to the Java 2 platform.

3. System Architecture Overview

The presented system is similar to the last
approach from section 2, as a proxy for a
group of devices connected to the CAN
interface of an embedded system is used.
Additionally, some effort had to be taken to
tie up the embedded system with the
network proxy. This results in an additional
level of indirection between the Jini proxy
and the CAN devices. It would be
desirable to directly interconnect the
embedded device and Jini, but at the
moment the JVM of the embedded system
doesn’t offer this functionality.

Hardware Architecture

The hardware consists of an embedded
system called TINI [10], a personal
computer, used as a proxy to the Jini
community, and optionally a personal
digital assistant (PDA) running the client.
The TINI platform is a low cost embedded
system from Dallas Semiconductor
running a small JVM. The hardware
consists of a 16-bit microprocessor, 512
KB of memory, an Ethernet controller and
some peripherals. These peripherals
include serial, parallel, 1-Wire ports (I2C),
and two onboard CAN controllers.
The software on TINI includes a small
operating system, a JVM, and the Java
classes. The operating system provides a
file system, memory management, I/O
managers and task scheduling. All tasks,
except the garbage collector are Java
applications. The JVM on TINI is based on
Java 1.1 and provides an additional
package for I/O capabilities (e.g. CAN).
Another interesting point is that “the goal
of the TINI platform is to fully support Jini
technology” [11] and the Java 2
Specification, including remote method
invocation (RMI). For the moment, we
have to cope with the restricted
capabilities of the TINI JVM, which doesn’t
support RMI. This leads us to the current
software architecture of integrating
devices into the Jini community, simplified
shown by figure 3.

Software Architecture

In the following section, we use the terms
DeviceManager-/Service/Proxy instead of
CanOpenDeviceManager-/Service/Proxy,
as they are just implementations in the
more general framework.
The main components of the infrastructure
include the DeviceManager and the
DeviceService on the TINI system, and the
DeviceServiceProxy residing on a
personal computer running a full JVM
including the packages needed to join the
Jini community. Regarding the device
architecture specification, a device proxy
for the TINI system was implemented,
which handles the Jini tasks on behalf of
TINI and its connected devices.
The communication between the
DeviceService on TINI and the
DeviceServiceProxy is implemented using
socket communication. This is similar to a
traditional client-server system with the
DeviceService as the client and the
DeviceServiceProxy as the server.

TINI Software Components

The software on the embedded system
primarily consists of two components, the
DeviceManager and the DeviceService.
The first one has the responsibility to
manage the devices which are connected
to CAN. To discover any devices on CAN,
an application layer protocol is
recommended. As a matter of principle
any higher level protocol which supports
discovery of devices can be used. In the

used. To accomplish the communication
with CANopen modules, a subset of the
CANopen protocol was implemented.
Currently the system supports service data
objects (SDOs) and some network
management services. As TINI already
supports CAN communication on the Java
level, there is no need to interface any
system driver with Java like described in
[5]. The CanOpen-DeviceManager is an
implementation of the interface
DeviceManager, holding a list of the
currently connected CANopen devices. To
accomplish this task, the manager
periodically sends SDOs with different
identifiers and the standardized mandatory
profile entry ‘devicetype’ to CAN. If the
manager gets a response, it sends an
additional request for the name of the
device. Supposing a device with a node
identifier of 8 exists, the manager first
stores the identifier and type of this device
in the device list. If the second request is
successful, it also stores the name of the
device. When a device discards, the
manager observes during the periodic
discovery process that a primarily detected
device doesn’t exist any longer and
deletes the according entry.
Until now, the work of the manager affects
only local resources. To propagate the
process of discovery and discarding of
devices, the DeviceManager throws an
appropriate event to interested listeners.
This is implemented according to the
observer pattern described in [12]. The
DeviceService implements the listener
interface and receives notifications about

DeviceService

DeviceManager

DeviceService
Proxy

Jini Lookup
Service

PDAClient

DeviceClient

PDAProxy

Service
Repository

ProfileService,
...

RMI

Socket

Socket

Socket

TINI Personal Computer (TINI & PDAProxy)

PDA

CAN

Figure 3: System Software Architecture

propagates the event by sending a specific
message to the DeviceServiceProxy. The
message includes the kind of event
(DeviceDiscovered, DeviceDiscarded,
etc.), the identifier, the name, and some
other information. As mentioned before,
the message is sent by sockets, as RMI is
not available.

Network Proxy Components

The DeviceServiceProxy, residing on a
personal computer, represents the
network proxy of the DeviceService. This
DeviceServiceProxy manages, like its
counterpart on the embedded system, a
list of the currently registered devices.
In the case of discovery, the
DeviceServiceProxy creates a new object
called DeviceProxy which implements the
interface Device and registers this object
along with some attributes with the Jini
lookup service as described in section 2.
After successful registration, the
DeviceServiceProxy receives a universally
unique identifier (UUID) from the lookup
service, which is further used to identify
the device in the Jini community. Figure 4
shows the previously mentioned lookup
service browser with two registered
devices along with the service item for one
device. The three attributes ProfilePanel,
DocumentPanel, and DevicePanel, shown
in figure 4, are graphical user interfaces

stored along with the service object and
will be described later.
If a device discards, the DeviceService-
Proxy first examines if the device is
registered as the state on the proxy
system can sometimes differ from the real
state. This kind of inconsistency can occur
on system bootup when the registration
process is in progress or if the devices are
connected and disconnected within a short
period of time.
Apart from the DeviceServiceProxy other
services like the ProfileFileService and
the ProfileService are registered in the Jini
community. The ProfileFileService is
responsible for delivering profiles (e.g.
electronic data sheets) which are either
stored in the file- or in a database system.
The format of the profiles is not specified
and can be exchanged with any other
representation, like for example XML, as
described in [14].
A typical client of the ProfileFileService is
the ProfileService which knows how to
manage (parse) a certain profile. In the
case of an XML representation, there is
the need for a ProfileService which can
manage XML profiles. A client of the
ProfileService receives a preprocessed
data structure, which can easily be
integrated into an application.

Client Components

The clients have to be distinguished
between clients running a full JVM, like for
example personal computers or laptops
and clients running a restricted JVM like
personal digital assistants. The latter
lacks, among other things, of the ability to
directly join the Jini community. To access
the system infrastructure, two different
clients are to be implemented. These are a
PDADeviceClient (PDAClient) which is
able to run on a restricted JVM, and a
DeviceClient which is dependent on a
Java 2 compliant JVM.
In the prototype implementation, a PDA
with a PersonalJava Implementation from
Sun Microsystems is used. The
PersonalJava Application Environment
Specification [15] defines a subset of
standard Java and specifies mandatory
and optional packages. The optional
package RMI is part of the Personal JavaFigure 4: Lookup Service Browser with two

procedure to tie up the system to Jini is
nearly the same as before. A network
proxy, called PDAProxy running on a
personal computer with a full JVM handles
the Jini tasks on behalf of the PDAClient.
This time we don’t have to care about
communication details as we are able to
use the features of RMI. The PDAProxy
connects to the Jini community through
the discovery protocol. After it has
discovered a lookup service, it requests all
services which implement the interface
Device. If such a service exists, the
appropriate service proxy is downloaded
to the PDAProxy. As any device, which
matches a particular type, is of interest,
the PDAProxy registers itself at the lookup
server to receive notifications about
service registrations of the given type.
Whenever such a service is registered or
unregistered, the PDAproxy receives a
notification. Equivalent to the services
mentioned before, the PDAProxy stores a
list of the currently available devices.
The first step taken by the PDAClient to
participate in the system infrastructure, is
to search the PDAProxy which is in fact an
RMI server. This lookup is managed by
the RMI registry, the naming service of
RMI. In contrast to the naming service of
Jini, the location of the RMI registry has to
be known. After this lookup, the PDAClient
is able to directly communicate with the
PDAProxy through remote method
invocation. The client connecting the
PDAProxy requests a list of the currently
registered devices and dynamically
downloads the code to interact with these
devices. This code includes a
communication interface, necessary to
directly communicate with the
DeviceManager located on the embedded
system. The communication interface is
based on socket communication and
handles all the communication between
the client and the DeviceManager. After
connecting the DeviceManager, the client
has the ability to access the chosen
device. The graphical user interface (GUI)
of the PDAClient uses the abstract
windowing toolkit (AWT) which is also part
of the PersonalJava implementation.
The (Java 2) DeviceClient directly joins the
Jini community and handles all the proxy
functionality on its own. The process to

events, and to download the service proxy
is the same as described above,
integrated in one application. In addition,
the Java 2 client has a more sophisticated
user interface as it can take full advantage
of Swing. The Java Swing packages
provide a powerful set of GUI components
with a pluggable look and feel.
Furthermore, the DeviceClient makes use
of an additional feature of Jini, the ability to
store service attributes (entries) along with
the service proxy. These attributes can
contain additional information about the
service, like for example a name, a
location, as well as any other serializable
object. Serializable means, that an object
is turned into a sequence of bytes, which
can later be restored fully into the original
object. Therefore, it is also possible to
store serializable user interfaces along
with service objects. These objects have
to be serializable, as they are downloaded
by clients. The Java 2 client makes use of
this feature, as it loads the appropriate
user interface along with the service
object.
As mentioned before, three user interfaces
(implementing javax.swing.JPanel) are
stored along with the service proxy. Figure
5 shows the profile tree (ProfilePanel) for a
CANopen device.

The other interfaces (DocumentPanel and
DevicePanel) are used to access a device
(e.g. read/write SDOs), and to show a
device specific document in HTML format.

4. Summary and Outlook

As the serviceability and manageability of
future systems gets more and more

Figure 5: Device Client (EDS-Profile)

interfaced to some kind of service
infrastructure. The Jini technology offers
an appropriate framework to integrate
devices and legacy systems into a
dynamic infrastructure. As nowadays no
systems, resp. devices supporting CAN
and Jini are available, a low cost
embedded system with CAN was
integrated into the general Jini framework
using proxies. Systems directly supporting
Jini will be available in the near future. If
we may think of the availability of CAN
devices with some memory and
processing power connected over realtime
Ethernet, it would even be possible for
these devices to directly participate in a
Jini community. With the possibility to
download code dynamically, no drivers
have to be installed and all device specific
interfaces (e.g. user interface) could be
downloaded from the devices. The strict
separation of the specification and the
implementation of services would offer a
huge potential for the creation of open
standards regarding the serviceability and
manageability of devices.

References

[1] G. Gruhler, G. Nusser, D. Bühler:
Teleservice of CAN Systems via
the Internet, Proceedings of the 6th

International CAN Conference (ICC
‘99), November 1999, Torino, Italy.
CAN in Automation (CiA).

[2] R.-S. Schimkat, G. Nusser and D.
Bühler: Scalability and
Interoperability in Service-Centric
Architectures for the Web. In 11th

International Workshop on
Database Experts Systems
Applications (DEXA 2000),
September 2000, London-
Greenwich, UK. IEEE Computer
Society Press. (to appear)

[3] D. Bühler, G. Nusser, G. Gruhler,
W. Küchlin: A Java Client/Server
System for accessing Arbitrary
CANopen Fieldbus Devices via the
Internet, South African Computer
Journal, No. 24, Nov. 1999, p. 239-
243, ISSN: 1015-7999.

[4] S. Oaks, H. Wong: Jini in a
Nutshell, O’Reilly & Associates,
March 2000.

[5] D. Bühler, G. Nusser: The Java
CAN API – A Java Gateway to
Fieldbus Communication,
Proceedings of the 3rd IEEE
Workshop on Factory
Communication Systems (WFCS
2000), Sep. 2000, Porto, Portugal.
IEEE Computer Society Press. (to
appear)

[6] Sun Microsystems Inc.: Jini
Architecture Specification, Revision
1.0, January 1999.

[7] Sun Microsystems Inc.: Jini
Discovery and Join Specification,
Revision 1.0, January 1999.

[8] Sun Microsystems Inc.: Jini Lookup
Service Specification, Revision 1.0,
January 1999.

[9] Sun Microsystems Inc.: Jini Device
Architecture Specification, Revision
1.0, January 1999.

[10] TINI Homepage.
http://www.iButton.com/TINI

[11] R. D. Giorgio, D. Loomis, S.M.
Curry: A promise of easier
embedded-system networking.
November 1999.
http://www.javaworld.com

[12] E. Gamma, R. Helm, R. Johnson,
J. Vlissides: Design Patterns:
Elements of Reusable Object-
Oriented Software, Addison-
Wesley Publishing Company, 1995.

[13] W. Keith Edwards: Core Jini, Sun
Microsystems Press, 1999.

[14] D. Bühler, G. Gruhler: XML-based
Representation and Monitoring of
CAN devices, Proceedings of the
7th International CAN Conference
(ICC 2000), Amsterdam,
Netherlands, October 2000. CAN in
Automation (CiA). (to appear)

[15] Sun Microsystems Inc.:
PersonalJava Application
Environment Specification, Version
1.1.2, August 1999.

[16] Bill Venners: The Jini vision.
August 1999.
http://www.javaworld.com

Acknowledgements

This work is partially based upon work
within the research consortium VVL
funded by the Ministerium für
Wissenschaft, Forschung und Kunst of the
state of Baden-Württemberg through the
research initiative Virtuelle Hochschule.

1 University of Tübingen
WSI – Symbolic Computation Group
Sand 13
72076 Tübingen, Germany
nusser@informatik.uni-tuebingen.de

2,3 University of Applied Sciences
Reutlingen / STA Reutlingen
Alteburgstr. 150
72762 Reutlingen, Germany
Phone: 0049 7121 271331
Fax: 0049 7121 25713
gerhard.gruhler@fh-reutlingen.de
http://www-sta.fh-reutlingen.de
http://robo16.fh-reutlingen.de

