
PALBUS: An Experience Report on Designing and
Analyzing Dependable Distributed Control Systems

Håkan Sivencrona, Chalmers University of Technology
Johan Hedberg, Swedish National Testing and Research Institute

Abstract

The use of distributed safety critical applications increases constantly. This new trend
requires detailed knowledge about how to design the system to reach dependability.
A failure in embedded distributed computer systems can result in high costs, e.g.
goodwill for the company, loss of market shares, redesign of the system and most
important, failure to meet personal safety criteria. Dependability can be achieved
through many methods and techniques but first after a thorough requirement analysis
of the system. It is furthermore important to measure and assess these properties of
the system. The Swedish research project PALBUS handles these issues, how to
design, develop and analyze distributed control systems with dependability in mind.
The project faces dependability considerations from various aspects, for instance the
importance of clear requirements and consistent terminology, wise utilization of
existing protocols, e.g. CAN, intelligent fault models and development principles to
reach specified fault tolerance and finally through thorough methods and techniques
for verification and validation of the implementation. Knowledge from many different
companies is distributed through their specific knowledge about for example
communication protocols. This paper describes the PALBUS project and extracts
information that could be used for dependability assessment. To do a thorough
description of dependability assessment is beyond this paper whose purpose is to
give a survey and some interesting suggestions concerning dependability.

1 Introduction

In distributed computer-based systems
there is sometimes an assumption that
these systems are safe and dependable
once tested and running. This is not true
since there can be no such system that
would not fail under some circumstances.
This assumption may however work for
non-safety critical applications where it is
possible to discuss in terms “loss of
customers due to failures in the system”.
In safety critical systems this reasoning is
impossible and would not only jeopardize
lives, it would also leave the company with
zillions legal suits and in the end without
business.
The consequences of serious failures set
dependability in focus for designers of
safety critical systems. This is probably the
reason why more and more companies
are interested in how to assess and prove
dependability properties.
Still many companies only say, accidents

hide their heads in the sand like some
famous bird.

How to assure that the system is
dependable enough?

PALBUS, a Swedish joint research project
between industry, university and research
institute, addresses this issue and discuss
methods and principles for dependability in
embedded systems such as CAN.

PALBUS investigates issues like the
importance of using a common and well
defined terminology relevant standards,
motivations for the choice of protocol for a
specific application, design principles,
implementing dependability, fault handling
and detection, verification and finally
validation methods.

This paper is a scan over the project parts
and should be useful for a designer of
dependable embedded systems. This

interesting questions for future related
projects.
The paper first consists of terminology,
comprehension and specification part and
then embedded control systems to choose
a protocol concept. Next step is Fault
model, handling and detection followed by
system design principles. After these parts
comes, validation and verification of the
system. Finally system development
procedures and system aspects.

2 Terminology, comprehension and
specification

Relevant standards and an appropriate
terminology are basic for a safety critical
system design. Standards because they
set requirements for a specific application.
The terminology in PALBUS is based on
Laprie´s [Lap95].

The terminology is even more important
for distributed control systems, since many
different vendors design nodes that are
connected to each other and using a
common communication channel to
exchange safety critical information.

In order to discern dependability features
of a system the following attributes are
commonly used:

• Availability, which means readiness for
usage

• Reliability, which means continuity of
service

• Safety, which means avoidance of
catastrophic consequences on the
environment

• Security, which means prevention of
unauthorized access and/or handling of
information

• Maintainability, restoration after failures

It is very important to understand how the
system will be used and which safety
critical situations it must cope with and of
course make sure that this knowledge is
correctly implemented in the specification.
To be able to reach these demands it
might be necessary to introduce
algorithms and techniques, such as atomic
broadcast, membership agreement, fail
silent nodes, redundancy (TMR) and

are thoroughly explained in PALBUS
[Edl00].

Following questions must be considered in
the specification:

• Is it clearly defined what a specific
level of dependability means.

• What actions will be taken to reach
that certain level of dependability?
In effect how can it be proved?

In PALBUS the importance of system
comprehension is discussed and how it
could be improved. PALBUS emphasis on
ways to describe and comprehend
functionality and dependability
requirements for a distributed system. This
can be done with a set of visual notations
and tools [Wan00].
Comprehension is a cognitive process to
really understand the requirements, the
design and implementation of a safety
critical applications and their behavior.
Comprehension usually involves cognitive
activities for understanding system
notation, architecture, components and
their static and dynamic behavior.

3 Embedded control systems, to choose a
protocol concept

As more and more systems are designed
using connected distributed computers
instead of one master node, to handle and
pass all messages between the distributed
nodes, the need for in depth
understanding of functionality, failure
behavior and fault tolerance has
increased. The topology of system
architecture and also the communication
paradigm affects the use and need of a
specific design. PALBUS examines
different protocol concepts and describes
advantages and disadvantages with
different solutions for instance, event
triggered communication v/s time triggered
as well as single-master control v/s multi-
master system control, i.e. a fully
distributed embedded system.

 Whom in charge?
 Multi Master
 All nodes can control
 Robust
 Low overhead?

 Central Master
 One node can control
 Single point failure
 Easy to analyze

 When to access?
 Event triggered
 Control triggered by
events
 Efficient for discrete
events
 Not predictable, not
deterministic
 Dynamic scheduling

 Flexible, easy to add
tasks
 Synchronized via
messages
 Low average delays,
limited predictability
 Time adequate

 Time triggered
 Control in time-slots,
easy to make fail-silent
 Efficient for continuous
signals
 Predictable, replica
determinism
 Static scheduling, before
run-time
 Composability, no side
effects, rigid
 Inherently synchronized,
periodically
 Known delays, small
jitters
 Resource adequate
 Easy to test

Figure 1. Comparison between different
architectures.

Developers of the system could use the
PALBUS comparison to increase the
understanding of the differences between
architectures and find out which solutions
are most appropriate in each application.

The topology of the communication
system is basic for a dependable system
structure and also affects the fault model.
Some topologies, offer possibility to use
double, redundant channels and are often
utilized in protocols that should provide
fault tolerance against bus failures, i.e.
short circuits and similar. This topology
need not be double throughout the whole
system but between those nodes that
need redundancy. If the double channels
are combined with redundant nodes, it is
possible to increase the reliability of the
system. A uni-processor system may use
a star coupled topology, and for example
disconnect short-circuited wires and thus it
is a robust system from that point of view.
Other topologies could be uni-directional
ring structures, tree structures and fully or
partially connected structures.

For a safety critical application such as a
brake-by-wire system, all actuators need
some intelligence (processor) and neither
of these nodes should be given a chance
to become a single point of failure. Thus
one could reason that a single master
system would not be appropriate. And
introducing a distributed system in this

the system and require for example
membership and atomic broadcast
protocols to be implemented. This of
course affects the dependability itself and
must be handled by the fault model.
A small comparison between different
communication principles (protocols) is
presented in figure 2.

Single-master Multi-master

Event-
triggered

Soft real-time
Not deterministic
None stop
systems
High bandwidth
demands

Safety Critical?
Soft real-time
Not deterministic
None stop systems
Low bandwidth for
discrete messages

Mil-Std-1553B CAN

Time-
triggered

Safety critical
Fail silence
Hard real-time
Predictable
High bandwidth
demands
Easy to analyze

Safety critical
Fail silence
Hard real-time
Predictable
Low bandwidth for
continuous signals
Cost effective

OBDH TTP/C

Figure 2. Features of four different
protocols used in safety critical
applications.

In PALBUS these protocols (figure 2)
where assumed to be able to handle a
safety critical application, although with
different efforts in h/w and s/w [Siv00]. In
effect, some protocols must use resources
in higher layers to reach these criteria
while others may have these dependability
mechanisms in the communication
controller.
Analyze is needed to discover if the
performance of the protocol is good
enough to handle short deadlines, high
latencies, jitter etc.

4 Fault model, handling and detection

A distributed system is believed to achieve
better fault tolerant performance than a
centralized system because the
distribution of intelligence and architecture
makes it easier to avoid single points of
failures. A side effect does appear though.
The error detection, error avoidance and
error handling must be distributed as well.

During design it is important to create a
fault model and possible fault states and
the next step is to check that necessary
error detection and error handling are
implemented to handle these faults.

However there are often difficulties to
foresee all faults and/or inject these
artificially.

PALBUS presents different faults that can
occur in the system and the effect of these
that must be taken into account when
choosing a fault model. It describes a
number of different fault detection and
fault handling mechanisms [Ask00].

Typical faults are temperature changes,
mechanical vibrations, ageing, and
electromagnetic interference that may
result in transient or permanent
component failure.
Design and specification faults are also a
source for failures but are harder to detect.
Specification faults are misunderstandings
of the demands on the system and cannot
be discovered by the system, since it
follow the specification.
Design faults can be either hardware or
software faults and occur when the design
does not match the specification. To
detect these faults exhaustive testing is
required although one can seldom detect
all. A fault tolerant approach must then be
chosen implying the use of design
diversity. This means that different
software (N-version programming) and
hardware are used for nodes with
redundant functionality.
The method chosen often depends on the
demands on the system. While recovery is
possible for some system it may not be
good enough for real time systems with
short deadlines. Although some fast
systems may use some sort of rollback.

The system performance when faults
occur can be described from following
viewpoints:

• The system must tolerate and still
provide full service for a specified
number of arbitrary faults. This could
be a steer-by-wire system for example.

• The system should, for a specified
number of faults not be degraded more
than to a certain level and still maintain
some service, the quality of service.

• The system should at least

membership agreement) faults that
may lead to failures and shut failed
blocks/nodes off (could be use of non-
specified plug and play devices).

• Assume that some faults are transient
and continue with the function as long
as extrapolation from old values can
be done satisfyingly. If not the system
will be turned off.

• The system shut down, if possible; i.e.
there exist a fail-safe state.

Depending on the application and the
criticality of the task, it should be able to
combine these above-mentioned
scenarios. For some systems failing nodes
are assumed to become fail-silent. This is
an issue for deciding about used protocol.

Ways to act after faults could be:

• Graceful degradation

• Use shadowing or redundant
nodes/circuits.

• Reset of the system or recovering
failing circuits/nodes.

5 System design principles

When a protocol has been chosen and the
fault model with its mechanisms has been
decided it is time to implement the design
outgoing from a certain high level protocol.
PALBUS examines actions that must be
taken care of during design phase.

The thought in PALBUS is that outgoing
from a certain high level protocol chosen,
what actions can I as designer/developer
perform to create as dependable system
as possible.

The examination takes into consideration
how to build up the bus topology (for
instance does the system need a
duplicated communication channel?). The
importance of utilizing the CAN protocol
optimally (Is all available status and
control signals utilized which can effect
dependability?). Choosing a relevant high-
level protocol, which can cope with the

dependability in the application code and
finally make sure that the system aspects
have been solved.

6 Validation and verification of the system

One of the most important parts in the
development is the verification and
validation of the distributed control system.

The verification should show that the
system does agree with the specification
and the validation shows that the system
can cope with safety risks in the
environment where it should be used.

Validation methods described in PALBUS
could be used during validation/verification
but also during development to increase
dependability. Methods described are
focused on validation of distributed control
systems, in effect, which specific methods
should be applied to distributed control
systems. The system validation methods
are divided in following subgroups
[Hed00]:

• Formal methods
• Assessment
• Test
• Inspection & audit
• Trial
• Simulation

The purpose with this part of PALBUS is to
give the industry a “tool-box” of methods,
which could be used during
validation/verification.

The methods described above could be
used as a part of the dependability
assessment. Some of the methods
described are analytical and some of them
imply practical testing.

Another assessment approach to use to
structure the whole system and to
decrease the complexity of the design, is
to divide the distributed system into
following levels:

• Physical installation level
• Bus level
• CAN communication controller level
• Application level

• Quality level

For each of these levels it is possible to
define a number of dependability
parameters which also is done in
PALBUS, but it is difficult to know if all
relevant parameters has been
implemented on each level and depending
on system different parameters could be of
importance. But dividing the system into a
number of levels makes the analysis
easier because it is very complex to
concentrate on the complete system
simultaneously.

Fault injection is an example of a very
useful method to observe and verify how
faults can be handled by the redundancy
in the system. Fault injection can be used
to calibrate methods that use threshold
constants for fault handling. Finally they
can be used to validate the efficiency of
the specified fault handling mechanisms.
This is the last step.
There exist several methods to extensively
fault inject and test a system, these are for
example Heavy ion injection,
electromagnetic injection, pin injection etc.
Fault injection is used where it is believed
it can represent real faults in the sense
that they can produce faults acting as
those caused by real faults. The faults can
furthermore more be injected at different
levels in the system and thorough planning
is needed. It is also a time consuming task
to handle the results and interpret them to
be able to modify the system to become
more fault-tolerant and dependable.

7 System development procedures

How is the design selected and how are
experiences handled. Who is responsible?
What is logged? This is some of the fields
where companies many times have
developed their own methods. Companies
that design real, safety critical systems
must have clear and realistic requirements
on both the system itself but also on their
own used methods. An investigation in
PALBUS shows that many companies
have very different strategies of how to
reach dependable systems. This
investigation handles both test methods;
development processes and the way

handled. As for requirement handling, this
is something that can include more clear
specifications.

A way to assess the development of the
new system is shown in figure 3, below.

 Test specification

 Test specification

 Test specification

Specification of
Node requirements

Figure 3. A process for development of
safety critical systems.

In the process to assess every step in the
process it is also valuable to iterate the
procedure so as to get something like
requirement analysis then to construction
of system, back to requirement analysis
and then down to requirement analysis of
the node and so on.

8 System aspects

An important part of PALBUS is to
consider the system aspects to reach
dependability. It has arisen in the project
that these issues are of great importance.
Below follows a number of aspects that
are considered in PALBUS:

• Could the system detect if a new
node/unauthorized is placed in the
cluster?

• Is it possible to check the status of
each node during start up or during
runtime?

• Could the system detect if a node is
missing during start up or during
runtime or works incorrect?

• How does the system cope with
incorrect messages or disappeared

• How is the “babbling idiot” failure
handled?

• Degradation of functionality during
error condition, how is this solved?

• How is the synchronization between
different nodes solved?

• Are errors logged somewhere in the
system when they occur?

• Does the system has some kind of
intrusion detection

This is just a few of those system aspects
that are discussed and described how they
are solved/not solved in different high level
protocols based on CAN.

These system aspects are listed in
PALBUS and could be used during
dependability assessment [Wan00].
In PALBUS a number of important system
aspects has been placed in a checklist to
give suggestions

9 Conclusion

PALBUS has given a good overview of
important parts for dependability
consideration. It has been very developing
to work together with industry, university
and research institute and to recognize
interesting areas. Although many
institutes, universities and companies
invest much effort in embedded computer
system development, it is still in the
beginning of the revolution. Dependability
assessment is the foundation to meet
liability and viability demands from both
insurance companies and authorities.

The PALBUS project has furthermore
given the companies a more detailed
knowledge concerning how to proceed in
their overall development. One aspect is
the importance of a system responsible,
for a single node, the interaction of several
nodes or perhaps the whole system.

Bus topology, time versus/event
single/multi master have massive impact
on the robustness/dependability/efficiency
and also that a protocol should be
specified for all these combinations to give
the system designer application flexibility.

There exists many development tools for

Requirement
analysis of system

Test of complete
system

Design of System

Node test

Function test

Requirement
analysis of node

Integration test

Development of node:
Design Implementation Test

development of the systems but can the
tool provider guarantee that these tools do
not introduce new faults and where is the
responsibility in such cases, should it be
on the system developer?

Who is responsible? Are there clear
instructions how the product shall be
used? Is it possible to introduce the
product in for example the North American
market and thus face possible legal suits
that may be a fact after a faulty function of
the system?

There is a need to avoid ad hoc methods
because these can result in the system
being impossible to validate and also
introduce new fault states; furthermore the
dependability assessment should be done
again. Plug and play components must be
specified or avoided totally if you have no
control over the black box.

Short time to market or a dependable
system? Is this a contradiction?

How is the requirement handling done in
the development process? This is
something that many companies must
improve. Does it exist time to iterate the
process once more to spot weaknesses in
the system?

What are realistic requirements? In safety
critical systems a zero fault demand is
unrealistic and maybe also impossible to
reach. Instead focus could be set to
qualitative requirements where for
example no single fault may lead to
accidents or quantitative requirements that
could mean not more than a specified fault
rate, for example.
In these realistic requirements it could also
be mentioned requirements of specific
development processes or claim limits for
lowest unreliability.

What is required to be able to trust CAN
based protocols in safety critical
applications? Is it enough to add s/w in the
application code or is the h/w able to meet
the real safety critical demands?

10 References

[Lap95] J.C. Laprie, Dependability –
Its Attributes, Impairments and Means:
Springer-Verlag, 1995.

[Siv00] H. Sivencrona, J. Hedberg,
Comparative Analysis of Dependability
Properties of Communication Protocols in
Distributed Control Systems: PALBUS10:
2, 2000.

[Chr99] M. Rimén, J.
Christmansson, Testing CAN-based
Safety-Critical Systems using Fault
Injection: In Proc. Sixth Int. CAN
Conference (ICC´99), section 11, pp. 16-
21, Turin, Italy, November, 1999.

[Law92] H. W. Lawson, Parallel
Processing in Industrial Real-Time
Applications: Prentice Hall, 1992

[Wan00] Y. Wang, et al, Distributed
System Dependability Description and
Comprehension: PALBUS10:3, 2000

[Hed00] J. Hedberg, et al, Validation
methods for distributed control systems:
PALBUS10:10, 2000

[Edl00] H. Edler, et al, Definitions:
PALBUS10:1, 2000

[Ask00] Ö. Askerdal, Fault detection
and handling: PALBUS10:5, 2000

Chalmers University of Technology
Department of Computer Engineering
SE 412 96 Göteborg
+46(0)31-772 1669
+46(0)31-772 3663
E-mail: sivis@ce.chalmers.se
Website: www.ce.chalmers.se

Swedish National Testing and Research
Institute
Physics and Electrotechnics
Software & Safety
Box 857
SE 501 15 BORÅS
+46(0)33-165071
+46(0)33-125038
E-mail: johan.hedberg@sp.se
Website: www.sp.se/pne/software&safety

