
08-19

A Scalable, Smart, Self-learning Router for CANopen

Olaf Pfeiffer, Christian Keydel and Andrew Ayre, Embedded Systems Academy

Bridges, gateways and routers cannot only extend the maximum length of a CAN
based network, they can also help increase overall bandwidth, as
network segments can be made shorter and faster and
network segments only receive network traffic that involves nodes connected to
it.
In the past, configuring a CAN bridge was a time consuming process, as the
bridge had no way of knowing which messages need to be forwarded to which
network segments.
This changes if the protocol used is a higher-layer protocol such as CANopen. For
CANopen a bridge or router can be build to be self-learning: due to a pre-defined
connection set for identifiers, the device just listens to the network traffic and
learns Òon-the-flyÓ which messages need to be forwarded to which segments.
This paper summarizes the benefits and drawbacks of bridges and routers in a
CANopen environment and gives an implementation outlook for a scalable, smart,
self-learning router.

1. Background information

Using devices such as repeaters,
bridges and gateways to extend the
physical length of networks is nothing
new. On the Internet, these devices are
common practice and due to the high
volume became so affordable, that they
even found their way into private homes
with high-speed Internet access.

For CAN, the physical limits of length

and maximum speed are a serious
limitation for several applications. On
one hand there are applications where
CAN was not yet even seriously
considered because of these limits
(such as large scale networking
between gaming machines in casinos)
and on the other hand there are more
and more existing CAN applications that
run out of available bandwidth because
more and more nodes need to be added

08-20

(for example high-end automotive and
industrial control applications).

A good, affordable bridge or router for
CAN would help to overcome the
physical limits of CAN to a certain
extend.

Before we further investigate possible
options and implementation routes, letÕs
compare the commonly used forwarding
techniques in network environments:
Repeaters, bridges, gateways and
routers.

Repeater

A repeater acts on the physical layer
and directly repeats the physical signal
from one side of the repeater to the
other. A repeater cannot be used to
extend the length of a CAN network.
CAN requires that a bit propagates over
the entire bus before the next one can
start. A repeater operating entirely on
the signal level does not allow extending
the total length of the network.

Bridges

A bridge acts on the data link layer and
forwards entire message frames from
one network to another. Bridges can
extend the maximum length of a CAN
network. On the downside, they have to
completely receive a message frame,
before they can forward it. So even the
fastest bridge can easily have delay
times of more than 150 bit times (the
worst case message length can even be
longer). This imposes some limits for
applications with very high real-time
demands.

On the upside, because bridges receive
entire data frames, they can be built
ÒsmartÓ. Smart, self-learning bridges are
commonly used in the Internet. They do
not simply forward all messages from
one network segment to the other
segment. They evaluate the packages
and forward only those messages, that
need to be forwarded. Smart, self-
learning bridges can help to increase
overall bandwidth, as communication
local to each segment will not be
forwarded and not occupy bandwidth on
the other segment.

08-21

On a regular CAN network without a
standardized higher layer protocol the
configuration of smart bridges a
challenge. Plug-and-play as available
with self-learning bridges is close to
impossible, as someone needs to
configure the bridge manually.
Otherwise, it just wouldnÕt know which
messages to forward and which ones to
keep local. While it may be possible to
detect the identifiers used for sending in
one segment of the network it is
impossible to find out automatically
which identifiers the nodes in a segment
are listening to.

Gateways and routers

Gateways and Routers act on the 3rd or
higher layers of the network protocol
stack. They are used for long distance
forwarding or forwarding between
completely different network types (for
example CAN and Internet). In general
we call a device just connecting two
network segments a gateway, whereas
a device that connects multiple
segments is called a router.

As CAN defines only the lower two
layers of the network protocol stack,
gateways and routers would need to be
implemented for a specific higher layer
protocol. The awareness of the higher-
layer protocol also enables such
forwarding devices to come much closer
to plug-and-play as now self-learning
can be implemented. Depending on the
protocol it can be possible to learn about
all forwarding requirements simply by
listening to all communication.

When it comes to real-time behavior, the
same limits as mentioned for bridges
apply. Each message would need to be
received entirely before a forwarding
mechanism can begin.

Choosing to build a router

If we compare the previously shown
forwarding technologies of repeater,
bridges, gateway and router, then the
router gives us the best benefits.

A repeater does not help with the
extension of a CAN network. A bridge
without higher protocol awareness
requires extensive manual configuration.
And a gateway only connects two

08-22

network segments, whereas a router
could be build with multiple ports, such
as 4 or even 8.

For these reasons we picked the router
for further examination and the following
questions need to be answered:

Can we build a smart, self-learning
router for CANopen networks? And what
kind of benefits and drawbacks would
we get?

2. The benefits of a router

LetÕs take the ÒWhat if?Ó approach: What
if - there would be a CAN router with 8
ports that is smart, self-learning and
fast, meaning it only forwards packages
to network segments / ports as required
and the delay time within the router is a
ÒvirtualÓ zero.

Bandwidth

This hypothetical device could be used
to create a star topology with 8
segments and the router in the center

(see figure 4). Assuming a bit rate of
1Mbit/s on all segments the overall
bandwidth of such a system is now in

the range of 1 to 8Mbit/s. The worst
case of 1Mbit/s occurs when one single
segment needs to handle ALL
messages transferred.

For example, if all messages need to be
forwarded to one network segment (for
example node 3 in figure 4 needs to
receive ALL messages). The best case
occurs when the router forwards no
messages and independent, local
communication of 1Mbit/s is used on all
network segments (for example nodes 1
and 2 in figure 4 communicating with
each other). As both cases do not make
much sense, the real-world average
would be somewhere in between and
surely highly depends on network layout
and requirements. However, an overall
bandwidth of 3-4Mbit/s should be
achievable.

It should be noted, that in general all
network segments could operate at
different baud rates.

08-23

Flexible topological structure

Although the maximum distance would
be only twice as much as in a single
CAN network segment, the total cable
length in the flexible star layout would
be eight times longer than a single CAN
network segment.

The star topology is far more flexible
than a single line bus, especially for
network layouts that have to cover a
larger 2- or 3-dimensional area.

Depending on the intelligence of the
router, you can think of far more flexible
and fault tolerant layouts by combining
several routers (see summary and
outlook at the end of the paper).

Configuration

To which level a forwarding device such
as a router is auto-configuring or self-
learning depends on the higher-layer
CAN protocol supported by the device
and on the level of integration into the
system.

Goal of this paper is to show that with
CANopen it is possible to achieve a self-
learning, plug-and-play router that by
simply listening to the network traffic
learns which messages need to be
forwarded to which segments.

Error handling

Serious communication faults like bad
wiring or a bad node resulting in error
frames on any one segment do not
directly affect the other segments.

As long as the nodes in the affected
segment are not crucial to the entire
system, the system can still operate.

A router is a perfect instrument to
separate crucial or safety-relevant
communication from the remaining
communication.

3. The drawbacks of a router

As mentioned before, any kind of
forwarding device that entirely needs to
receive a CAN message before it can
start the forwarding mechanism imposes
some drawbacks onto the system. The
drawbacks primarily affect applications
with high demands on the real-time
behavior or those that require a good
synchronization of inputs and/or outputs.

Delays

The following delays can occur when
forwarding a message:

• One message length for every
message forwarded (it needs to be
received entirely, before a
forwarding mechanism can start)

• Router internal processing delay
(to keep this as short as possible
is the challenge)

• Arbitration delay on destination
segment (other higher priority
messages might get through first)

• Forwarding buffer delay in router
(if destination segment is very
busy, router might need to buffer
several outgoing messages)

How big the total maximum delay is,
depends highly on the network layout
and required communication between
segments.

For applications requiring the usage of
the CANopen SYNC message, a
reasonable work-around might be to
make the router the SYNC producer and
to ensure that all SYNCs are produced
on all network segments in parallel.

Overruns

One of the potential bottlenecks for such
a system that could even result in
message losses occurs if too many
consumers are on one network
segment. In that case too many

08-24

producers from too many segments
could send more messages than the
one destination segment could handle.
This is something that the system
designer would need to consider when
laying out the network.

4. Implementation Challenges

Now that we outlined what an 8-port
smart, self-learning router could do for
us, letÕs evaluate which technical
challenges we face to implement one.

The Hardware

Any router would need to be able to
handle 100% busload on each port Ð in
worst case all at the same time.
Assuming an 8-port system, this would
mean an overall 8Mbit/s bandwidth to be
handled. NOTE: For this scenario, a
100% busload caused by the shortest
CAN data frames would result in more
than 150,000 CAN messages per
second to be received by the router!

For a prototype implementation existing
components should be used Ð so a
completely new, dedicated hardware
based on new CAN controller designs is
not further pursued at this moment.
Instead we will focus on building the

router based on existing microcontroller
and CAN controller solutions.

Obviously, a single processor driven
router would probably sooner than later
run into performance problems. There
will always be a hard limit on how many
CAN ports a single processor could
handle at 100% busload.

ThatÕs why a scalable router (easily
configurable for different numbers of
ports) would need to be implemented
with multiple processors. The most
flexible layout would require one
processor handling each CAN port.
Additionally, these processors would
need to have access to a high-speed
backbone interconnecting all the
processors within the router (see figure
5). This backbone would need a

08-25

bandwidth big enough to handle the
worst-case throughput of the largest
router configuration. For a router with 8
ports, that would be about 4Mbit/s
(Remark: if all segments produce 100%
busload, there is no bandwidth on any
segment left, so the router could NOT

forward any message and the used
backbone bandwidth would be 0MBit).

The basic idea for the forwarding
algorithm would be that any incoming
message frame on any port gets
broadcast via the backbone to all other
ports. Using local lookup tables, each
processor decides individually if a
particular message needs to be
forwarded to its local CAN network
segment.

As we do not want to introduce yet
another networking technology within
the router, one of the simpler
approaches to implement such a
backbone comes from techniques used

in massive parallel computers. In these
computers, data can be shared with
neighboring processors through a
synchronized shifting process. In these
synchronized access cycles, processors
can access a neighborÕs processor
memory.

To adopt this technology to the router
requires a synchronized Òwrite to my left
neighbor and read from my right
neighborÓ shift cycle. One simple
method would be to use latches
between the processors and upon a
synchronized interrupt signal all
processors would first write to the
latches on one side and then read from
the latches of the other side (see figure
6).

Selecting Microcontrollers

Due to the high demands on the
throughput of the backbone of the router
common 8-bit microcontrollers would be

08-26

stretched beyond their limits. On the
other hand, common 16-b i t
microcontrollers have so much
performance, that besides handling the
backbone, they could also handle 2
instead of just one CAN port. And if we
look beyond 16-bit, a 32-bit ARM
derivative should easily handle about 4
CAN ports and still be able to maintain
the high-speed backbone.

A first prototype would most likely be
based on a 16-bit microcontroller with 2
CAN interfaces supporting router
configurations with 2, 4, 6 or 8 CAN
ports.

The Software

We currently envision two software
versions for the CANopen router:

One that does not act as a CANopen
device, it does not have a CANopen ID
number and cannot be addressed. Its
presence in the network is completely
invisible to the other CANopen nodes.

The other version would be a CANopen
device with its own node ID number and
an Object Dictionary allowing for
customized configurations.

The benefit of version one is that it is a
true plug-and-play solution backward
compatible to any existing CANopen
network.

The benefit of version two is that the
master can be made aware of the
presence of a router. Knowing its
presence the master can access router
configuration or forwarding statistic data,
reset the router or even take its
presence into account when configuring
other nodes. The router could also
generate an emergency if overload,
delays or overruns occur on any
segment.

For the scope of this paper, we will
focus on the plug-and-play version.

Self-learning

To support true self-learning, there are a
few conditions that must be met when
using the router in a CANopen network:

1. All nodes in the network must be
CANopen conform.

2. All nodes must startup with the
default, pre-defined connection set
(if other connection sets are used,
they must be configured by the
master during the pre-operational
state of each node)

3. The router must be powered-up
and operational when the first
boot-up message occurs on the
network.

To implement the self- learning
forwarding mechanism, the router needs
a lookup table for each destination
network segment / port. To handle 11-bit
IDs (0 to 2047), a lookup table with 1 bit
for each identifier is required (256
bytes). If a corresponding bit is set, it
means that a message with that
identif ier is forwarded to the
corresponding segment. Per default, all
bits are set, meaning that every single
message is forwarded to all segments.

The self-learning steps require, that with
each message received, the router
needs to double-check if the information
contained (either by pure ID number, but
in some cases also by the data) allows
making conclusions about the future
forwarding mechanism.

The scope of this paper does not allow
listing all eventualities. However, a few
examples can illustrate the mechanism:

When receiving a boot-up message on
any port, the router can recognize which
node ID produced this boot-up
message. Knowing that a particular
node is on a particular port allows us to
clear all bits in the look-up tables of the
other segments representing Receive
PDOs or Receive SDOs associated with

08-27

that node. In other words, once the
boot-up message is received and
interpreted, messages sent to that node
via SDO or PDO will never be forwarded
to any other segment.

In a similar scenario, the NMT message
send by the Network Management
Master allows the router to determine
the port that the master is connected to.
All transmit PDOs and transmit SDOs
do only need to be forwarded to the
segment with the master, so the
corresponding bits (a total of 5 * 127 =
635 bits) can be cleared in the look-up
tables of all other segments.

A more complex example deals with the
linking of PDOs. The default settings for
PDOs are not very likely to be used in a
real-world network. In most CANopen
networks the COB IDs used for PDOs
are changed. The master can change a
COB ID with one expedited SDO
transfer for each ID that needs to be
changed.

In order to correctly handle these cases,
the router needs to monitor all expedited
SDO download requests issued by the
master (ID and data contents). The
following information needs to be
recognized:

• CAN ID used Ð marks SDO
request to certain node ID

• 1st data byte Ð marks expedited
SDO download requests

• 2nd to 4th data byte Ð marks the
index and subindex of the Object
Dictionary entry affected

• 5th to 7th data byte Ð contains the
data

If the router recognizes, that a PDO is
assigned a new COB ID using the CAN
message above, it needs to change the
look-up tables accordingly. That could
mean that bits that were previously
cleared are now set again to allow the

forwarding of the PDO to the
appropriate destination segment.

5. Summary and outlook

Smart, self-learning CANopen routers
as described in this document would not
only extend the physical length of a
CANopen network, they would also
increase overall network bandwidth or
throughput and allow system layouts
with a far more complex network
topology than ever before.

The router is Òplug-and-playÓ as it does
not need to be configured (other than
baud rates used). However, the system
integrator would need to pay more
attention when selecting the triggering
and scheduling mechanisms for each
individual node to avoid bottlenecks.

Some applications with hard real-time
requirements might not benefit from
such a router, although some work-
arounds are available for applications
requiring synchronized IO.

Once a router as described in this paper
becomes available, the next logical step
would be to think about further software
enhancements as found in Internet
routers.

If a CANopen router is a configurable
CANopen node with its own ID, it could
be programmed to recognize other
CANopen routers in the system. This
could allow setting up Òtrue ringsÓ
requiring the routers to use Òtrue routing
algorithmsÓ similar to those used by
Internet routers.

Figure 7 shows an example where
multiple routers build a Òbackbone ringÓ
consisting of 2 connections to each
neighbor. Such a system could still
work, even if any up to three network
segments of the backbone ring break.

Depending on the complexity of the
routing algorithms, the routes taken

08-28

could also be determined dynamically
depending on the busload on each
segment. If the busload on a particular
segment is already high, the routers

could automatically send messages via
the longer route, if that is less
congested.

As with any CAN / CANopen
implementation, feasibility of bridging or
routing highly depends on the particular
application. Although primarily targeted
at applications requiring longer
maximum distances between nodes, the
router introduced in this document can
also help application that require an
overall higher throughput/bandwidth
than the maximum 1Mbit CAN offers.

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110
www.esacademy.com

Olaf Pfeiffer
P: (408) 910-7899
opfeiffer@esacademy.com

Christian Keydel
P: (408) 910-8418
ckeydel@esacademy.com

Andrew Ayre
P: (520) 885-7438
aayre@esacademy.com

