
iCC 2003 CAN in Automation

02-1

Automatic Check of EDS

Michael Friedrich, Wolfgang Kuechlin, and Dieter Buehler, Wilhelm-Schickard-Insitute for Computer
Science, University of Tuebingen

Electronic Data Sheets (EDS) do not always match the current specifications. The user
of a CAN device has to check the EDS for syntax and for his application specific
requirements. It can be a nuisance to do this manually, especially when the EDS
changes often. Therefore, we implemented an automatic EDS Checker to perform this
task and ensure the conformance of the EDS with standards and intern policies.

In this paper we present this kind of software, an automatic EDS Checker. The
program translates the EDS to an XML representation conforming to the Device
Management Markup Language (DeMML). This is also the language for Device
Investigator, our device monitoring tool. The actual checking is performed on this XML
document. During the checking process corrections to the EDS, like creating unique
parameters, can be applied. The individual tests are described in another XML
document based on ComputeML. Predefined functions for comparison of strings and
standard data types exist. Furthermore, basic tests can be aggregated to more
complex ones. The defined tests are shown and a subset can be selected during an
EDS check. We present a program which is on one hand easy to use with already
defined tests and on the other hand tailor able to special needs.

1 Introduction/Motivation
The use of Electronic Data Sheets (EDS)
for the description of CAN devices is
specified in the CiA DSP 306 [1]. Despite
the specification, the user of a CAN device
might have additional restrictions to the
EDS. These restrictions can be either
syntactically or semantically. For example,
enforcing all parameter names to be
without blanks is a syntactic restriction and
checking whether a given baud rate is
supported is a semantic restriction.
Checking the EDS can be annoying,
especially during the development cycles,
when the EDS changes often due to
changing implementations from the device
vendor. We implemented a Java and XML-
based software to check EDS
automatically. The goal was to build a
flexible system, which allows creating new
checks based on the customers needs
without recompiling the whole software.
Additionally, the system does not only
check the EDS but also can change it to
the user’s needs.
The rest of the section describes the
organization of this paper. An overview
over the usage of the EDS Checker is
given in the next section. Afterwards, the
Transformation and checking process are

described in detail and the paper
concludes with a summary and outlook.
2 Overview
The EDS Checker is based on the
EDS2XML Translator [2] and the
XJML_Eval tool developed by Dieter
Buehler. The approach is to translate the
EDS to a XML representation with the help
of EDS2XML and then to apply the XML
tools XJML_Eval which performs the tests.
The XJML_Eval tool checks XML
documents so the EDS has to be
translated first. Another reason to separate
the concerns of parsing and testing is the
flexibility for new data formats to check.
Furthermore, a lot of tools like query,
transformation and manipulation of
documents are available for XML which
allows faster and more flexible software
development. Additionally, if the EDS
format changes, only the EDS2XML
Translator has to be changed but not the
testing component.
The EDS Checker is implemented in Java
and based on two different XML
languages. First, the Device Management
and Markup Language (DeMML) is used
as an intermediate XML format for EDS.
Secondly, the ComputeML describes the
checks to be applied to the translated

iCC 2003 CAN in Automation

02-2

EDS. These languages are described in
detail later on (cf. Chapter 3 and 4).
Because the EDS can be corrected while
tested, it must be translated back from its
XML-representation to EDS. The different
steps and intermediate formats are
outlined in Figure 1.

Figure 1: The EDS processing scheme
beginning with the original EDS
at bottom left.

The types of the predefined checks are
nearly unlimited as the EDS Checker can
easily be extended with new tests written
in Java. A lot of tests are already available
in the actual system among these are
boolean computations which evaluate to
true or false, string manipulations and test,
numeric computations, and more. Further
details of defining test cases are described
in Chapter 4.4.
The EDS Checker has simple graphical
user interface (GUI) (cf. Figure 2) which
allows the user to check EDS or DeMML
documents and to translate between these
two formats. The progress and all errors
are displayed in the main window. For
example, any entry in the EDS which does
not conform to the specification is ignored
in the translation and displayed here.
Choosing the Check EDS file button lets
the user chose a file and then, a list of
available checks is displayed (cf. Figure

3). This list contains all tests previously
defined in the EDS Checkers ComputeML
file. Among these are tests, if certain baud
rates or other features are available. Other
tests are more complex like unique or
blank free parameter names.
The user commits the dialog after
selecting the desired tests. The tests are
then applied to the transformed EDS and
the results are displayed in a standard
browser window (cf. Figure 4). Because of
potential corrections to the EDS, it has to
be saved again and therefore, a save
dialog pops up.

Figure 2: The GUI of the EDS checker.

Figure 3: The list of currently defined
checks.

iCC 2003 CAN in Automation

02-3

Figure 4: The results are displayed as
HTML in the host system’s
standard WWW-browser.

3 DeMML
The Device Management and Markup
Language (DeMML) is a universal data
format for the representation of devices
and groups of devices. It is based on the
CANopen Markup Language (CoML) [2]
but extends it as it can also store a device
configuration and is not restricted to
CANopen devices. These features make
DeMML more powerful than needed here.
Nevertheless, it covers all elements of an
EDS. A sample DeMML fragment is
illustrated in Listing 1.

<?xml version="1.0" encoding="UTF-8"?>
<CANopenDevice>
<Device DeviceId="4711">
<FileInfo CreatedBy="XY GmbH"
 CreationDate="05-21-96"
 CreationTime="07:00AM"
 Description="EDS for ABC Device"

 FileRevision="4"
 FileVersion="2"
 FileName="abc.eds"/>
<DeviceInfo>
<Vendor Name="XY" VendorId="0"/>
<Product Name="ABC"
 Revision="1"
 ProductId="0"
 Version="1"/>

</DeviceInfo>
<Parameters>
<SupportedDataTypes>
<SupportedDataType
 DataTypeId="0x0004"/>
<SupportedDataType
 DataTypeId="0x0005"/>
<SupportedDataType
 DataTypeId="0x0006"/>
<SupportedDataType
 DataTypeId="0x0008"/>

</SupportedDataTypes>
<ParameterCategory
 Name="MandatoryObjects">
<Parameter
 Name="Device Type"
 DataType="7"
 AccessType="ro"
 ParameterId="1000,0">
<DefaultValue>
0x30191

</DefaultValue>
<ParameterExt
 Index="1000"
 Subindex="0"
 PDOMapping="0"
 ObjectType="7"/>

</Parameter>
…

</ParameterCategory>
<ParameterCategory
 Name="OptionalObjects">
<Parameter
 Name="Manufacturer Status

Register"
 DataType="7"
 AccessType="ro"
 ParameterId="1002,0">

…

Listing 1: A fragment of a sample XML
document

The EDS Checker gets its input for the
tests from this document.

4 XJML_Eval
This component performs the actual
checks on the transformed EDS. The
provided ComputeML document contains
the definitions of the tests. Each test
consists of a selection of parameters and
one or more function calls. The results of
the evaluations are entered into a copy of
this document and finally transformed with
a XML Transformation into a HTML file
containing the human-readable results.
For an illustration of XJML_Eval and its in-
and outputs, see Figure 5.

iCC 2003 CAN in Automation

02-4

Figure 5: XJML_Eval is configured by a ComputeML document. The test functions can be
external and the result is generated according to a stylesheet.

4.1 Function calls

The XJML_Eval component uses Java
functions to evaluate the test results.
Given the full control of a programming
language, all computations with the input
parameters are possible. There are no
restrictions for the functions beside their
class being accessible. Even database
requests are feasible, for example to
compare with stored values. As depicted
in Listing 2, the test functions are
programmed straight forward.

public static boolean And (Boolean b1,
 Boolean b2)

{
return b1.booleanValue()

&& b2.booleanValue();
}

Listing 2: The logical AND computation in
Java.

The test functions are loaded dynamically
from the resource specified within the test
definition. They can be loaded from the
local hard disk or over the Internet from a
Web-server. The latter way supports the
collaboration of device vendor and
customer, as the tests can be easily
supplied by either side for the other to use.
Test functions get their input from either
selections as described in the following
chapter or the input can be a result of an

other function. Hence, complex tests can
be built out of simple test functions without
programming in Java by only describing
them in XML.

4.2 Selections

The test functions need input parameters
which can be evaluated. As mentioned
above, the foundation for the tests is the
DeMML document. Therefore, XJML_Eval
has to extract specific parts of it and pass
them to the functions. The selection is
performed with the help of XPath, which is
another XML tool. XPath allows arbitrary
queries in an XML document. More
precisely, it is a query over the hierarchy
of XML elements in a document. Elements
and Attributes can be used as constraints
and also wildcards are allowed. For
example, the vendor name of a device is
of interest. In Listing 1, the vendor name is
“XY” and the path in the hierarchy is
CANopenDevice/Device/DeviceInfo/Vendo
r/@Name which is also the query string.
Note that the “@” denotes the access to
an attribute of an element, here in the
Vendor element. The same query result
could be achieved by the search string
//Vendor/@Name. The double-slash // is a
wildcard for any sequence of elements
from the root to the vendor element which
can only occur once.

iCC 2003 CAN in Automation

02-5

The result set of a query can contain
several items which are passed to the test
function as parameter. If a function is
defined only for single parameters, care
must be taken that the query will never
have a result set with more than one
element.

4.3 Wrapping

The results of a query must be wrapped in
Java objects to pass them to the test
function. The wrapping is supported by
type information stored together with the
query string in the ComputeML document.
The EDS Checker permits the use of any
kind of parameter types as long as a java
implementation exists which can construct
such an object based on the query result.
It is therefore responsible for parsing
query results.
The wrapping is vital for the EDS Checker
to choose the correct function as the
object oriented concept of overloading
functions is permitted. Multiple functions
can have the same name as long a s they
can be distinguished by their parameter’s
types.

4.4 Predefined Test Functions

In this chapter, we analyse a defined a test
function to show how new tests can be
constructed. The example checks if a

SYNC object is present and has a given
value (Listing 3). First of all it is a boolean
computation, as the result is either true or
false. The description in the second line is
important as it is displayed in the test
selection dialog (Figure 3) and after the
processing with the results (Figure 4).
The example is a nested test function
because we first have to check whether
the entry exists, and if it exists, if the value
is correct. At first, the existence of this
entry is checked (lines 3 to 12) with the
boolean computation Equal . This test
function takes two parameters of equal
type String. The first parameter is the
result of a XPath-query and the second
one is a fixed empty string. Therefore, we
check if the result of the query is an empty
string. In this case, the function evaluates
to true and the outer boolean computation
(logical OR) also returns true. Otherwise, if
the entry exists, it has to be tested for
equality with the given value (lines 13 to
24). The same function is used but with a
dif ferent parameter type. Thus,
overloading is permitted with test
functions.

4.5 Result processing

During the processing of the tests, all
intermediate and final results are stored in
a copy of the ComputeML document

1 <BooleanComputation Id="SYNC" Method="Or">
2 <Description>Check SYNC Object</Description>
3 <BooleanComputation Id="Check_Existence" Method="Equal">
4 <PredefinedParam Array="no" Type="String" Description="DefaultValue of COP-ID SYNC">
5 <Value Type="XPath">
6 //Parameter/ParameterExt[@Index="1005"]/ancestor::Parameter/DefaultValue/text()
7 </Value>
8 </PredefinedParam>
9 <PredefinedParam Array="no" Type="String">
10 <Value Type="Fixed"/>
11 </PredefinedParam>
12 </BooleanComputation>
13 <BooleanComputation Id="ID_SYNC" Method="Equal">
14 <PredefinedParam Array="no" Type="Integer" Description="DefaultValue of COP-ID SYNC">
15 <Value Type="XPath">
16 //Parameter/ParameterExt[@Index="1005"]/ancestor::Parameter/DefaultValue/text()
17 </Value>
18 </PredefinedParam>
19 <PredefinedParam Array="no" Type="Integer">
20 <Value Type="Fixed">
21 128
22 </Value>
23 </PredefinedParam>
24 </BooleanComputation>
25</BooleanComputation>

Listing 3: A sample boolean computation

iCC 2003 CAN in Automation

02-6

containing the test definitions. The EDS
Checker transforms it to a HTML file which
is displayed in a WWW-browser. The
transformation is performed with XSLT, an
other XML technology which allows
translation of XML files according to
predefined style files. XSLT also uses
XPath to select certain fragments of a
document and translate them according to
the rules defined in the style sheet file (cf.
Figure 4 for the result).

5 Conclusion
In this paper we presented the EDS
Checker which automates the test of
Electronic Data Sheets. With this software,
users can enforce project specific
constraints. The tool is built to be
extended in terms of different tests, data-
and result formats band users are
encouraged to customize it to their specific
needs. The software can be used in
heterogeneous environments, because it
is based solely on Java.
We are thinking about making the tool
available via the World Wide Web.

6 Literature
[1] CAN in Automation e.V.: Electronic Data Sheet

Specification for CANopen. CiA Draft Standard
Proposal 306. Version 1.1. http://www.can-
cia.de/downloads/ciaspecifications/?42

[2] Bühler, D and Gruhler, G: XML-based
Representation an Monitoring of CAN Devices.
In: Proc. Of the 7th International CAN
Conference (ICC 2000), Amsterdam, The
Netherlands, October 2000.

Michael Friedrich
University of Tuebingen
Sand 14
72074 Tuebingen, Germany
+49 (7071) 29 - 70475
+49 (7071) 29 - 5160
friedrich@informatik.uni-tuebingen.de
http://www-sr.informatik.uni-
tuebingen.de/friedrich/

Prof. Wolfgang Kuechlin
University of Tuebingen
Sand 14
72074 Tuebingen, Germany
+49 (7071) 29 - 77047
+49 (7071) 29 - 5160

kuechlin@informatik.uni-tuebingen.de
http://www-sr.informatik.uni-
tuebingen.de/kuechlin/

Dr. Dieter Bühler
University of Tuebingen
Sand 14
72074 Tuebingen, Germany
buehler@informatik.uni-tuebingen.de
http://www-sr.informatik.uni-
tuebingen.de/~buehler/

