
iCC 2003 CAN in Automation

12-1

Building Door Control

Dieter Kuchenbecker, Effeff Fritz Fuss GmbH & Co. KGaA

Business buildings use doors with several electronic and electromechanical safety and
security devices. These doors are for safety (escape route doors), doors for security areas,
door interlock systems and automatic doors for convenience. The connection of various
devices is today a challenge having as result the right door functionality. Some devices are
also dependent from others, so the general function of the door depends also from the right
coordination and control of those devices. Another problem is the wiring, some devices
needs at least ten wires and if some of them are mounted on the door leaf, the problem is to
carry the cable to the door frame.

For those reasons, a door device bus network is necessary. In building automation (e.g.
access control), the door can be seen as a black box with defined functionality. The
configuration and extension of those devices to the door functionality will become to be easy
and flexible using a bus network.

Background

Since the antiquity mechanical locks were
used to protect material assets.
Fundamentally there were no changes
until today. To lock a door, mechanical
devices are still used. Electromechanical
strikes were invented for convenience to
unlock a door that is far away. Today in
business buildings there are much more
different devices mounted around a door
to increase security, safety and
convenience, e.g. security locks, access
control, card readers, panic bars, escape
route systems and door operators for a
comfortably door pass of handicapped
persons.

Problematic

Figure 1: Devices around a door in a
conventional manner

It is very difficult to connect different
devices together to fulfill tasks of an

access controlled door or special door
conditions and dependencies between the
devices are very critical. Normally the
devices have more than ten wires to
connect because of some micro switches
inside, therefore it is not possible to get
the right task without an additional relay
box. So there is a need to reduce the wire
numbers and increase the intelligence of
the devices itself to make installation much
easier.

CAN-Bus Network

A device bus network is used to reduce
wiring, increase flexibility and simple
retrofit of new devices. A gateway is the
physical and logical interface to an upper
level system, e.g. a building management.

Figure 2: Door device bus network

building access control network

CAN

Ethernet
Gate-
way

door operator

push button

panic bar

security lock

electric strike

card reader
keypad

1 2 3

4 5 6

7 8 9

0A B

iCC 2003 CAN in Automation

12-2

Then, the door can be seen as a black box
with a defined functionality. Also the
configuration can be done over the bus
network.

Requirements

As seen in Figure 2, all the devices must
have a small electronic circuit board
inside, it must be very cheap and robust
concerning EMC/EMI. CAN fulfills these
physical requirements. Many of the micro
controllers have CAN inside, so there is no
need for an additional CAN controller. The
wiring must be very easy with a free bus
topology. The data transfer should be
secure and a node guarding is required.
CANopen is a protocol, that covers all the
logical requirements. Finally a very easy
putting into operation like Plug & Play is
necessary. This requires, that the logical
connections between the devices have to
be established automatically. Every device
must be able to determine which potential
communication partner is present in the
network. Dependent on this information,
the logical connections are established.

Node-ID

Every node of the CAN bus system needs
a node ID for addressing the message.
Normally it will be set with dip switches or
other switches, mounted on the printed
circuit board. Because of very small
devices like an electric strike, it is not
possible to mount dip switches on board.
And to reduce faults in adjusting the IDs,
an automatism is used to adjust the node
IDs. For such an automatism, some
preconditions are determined:

- same baud rate for all devices

- every device must have a unique
individual number

- every device must be connected to the
same network

- simultaneous power up of all devices

- during the procedure, all devices will
be transmitters and receivers of the
same CAN message

Node-ID acquisition procedure

The acquisition procedure is divided into
three steps, the start-up synchronizing, the
claiming process and the claiming
message at the end of a successful node-
ID acquisition.

Device start-up synchronization

The problem in real systems is the
different start-up time of different devices.
During the startup time, activities like
initializing ROM, RAM and other
peripherals are preformed. Obviously the
time spent for these actions depend
strongly on the implementation. The start-
up synchronization compensates the
different timings in a way that all
connected devices are guaranteed to have
the same starting point in time.

Figure 3: State machine synchronization
process

The state machine for the synchronization
comprises the following states:

- Initialization – Initializing the hardware

- Synchronization phase I – device is
initialized and the CAN controller is
already active, no messages are
evaluated

- Synchronization phase II – device is
aware of any synchronization message
received over the bus

Initialization

Synchronization
phase I

Synchronization
phase II

0

1

2

4

3

iCC 2003 CAN in Automation

12-3

The state machine for the synchronization
comprises the following transitions:

0 After power-on or reset, the device
starts here.

1 CAN controller is initialized and the
device enters the synchronization
phase I.

2 After the synchronization phase I is
elapsed (fixed time for all devices), the
synchronization message is trans-
mitted over the bus.

3 The synchronization message was
received over the bus. The phase II is
restarted again.

4 The time for synchronization phase II
is elapsed (fixed time for all devices),
the claiming procedure starts.

Figure 4: Synchronization process

px – start up time device 1, depends to
internal initialization

py – start up time device 2, depends to
internal initialization

d1 – duration of synchronization phase I,
global parameter

d2 – duration of synchronization phase II,
global parameter

1 – starting phase I from device 1 / 2
after internal initialization

2 – transmission of synchronization
message from device 1 / 2

3 – reception of synchronization
message from device 2

4 – both devices are internal ly
synchronized

Figure 5: Claiming cycles

Claiming process

sync – claiming cycle synchronization

am1 – arbitration message 1

am2 – arbitration message 2

...

amn – arbitration message n

cm – claiming message

opt – optional: additional claiming mes-
sages

After all devices are synchronized, all
devices starts to claim a node-ID using the
claiming cycle synchronization (sync) and
sending the first arbitration message
(am1), which depends on the Vendor-ID
and the individual number as stored in the

dev ice . Any
device detecting
a higher prior

arbitration
message than it
is t ry ing to
transmit, leave
the cu r ren t
claiming cycle.
At the end of the

arbitration
(arbitration message n, amn), there is only
one device left, claiming a node-ID. Then it
transmits the claiming message (cm)
containing the claimed node-ID and other
information for Plug & Play functionality.
This claiming message will be received by
all the devices. If there is no additional
claiming message (opt), a new claiming
cycle starts with the remaining devices.
The “winner” of this cycle will also send a
claiming message. This process continues
until the last device has claimed its node-
ID. That is, that all devices in the network
know, how many devices are connected to
the network and which node-IDs are used.
The method of the claiming cycle relies on
time slots (see Figure 5). For every device
present in the network, one claiming cycle
is necessary. Every claiming cycle
consists of a synchronization slot, n

arbitration slots and at least one claiming

Device 1

Device 2
py

d1

d1 d2 t

td2d2’

21

1

3

2

4

px

sync

claiming cycle 1

syncsync
a
m
1

a
m
1

a
m
1

a
m
2

a
m
2

a
m
2

: :: :c
m

c
m

c
m

o
p
t

o
p
t

o
p
t

a
m
n

a
m
n

a
m
n

claiming cycle 2 claiming cycle n claim idle

iCC 2003 CAN in Automation

12-4

message slot. Additional claiming
message slots are possible. After claiming,
every claimed device will wait for the
claiming idle time to find out, if it was the
last claiming cycle. The last claimed
device send the NMT zero message to
boot-up the network.

Running system

After boot-up of the network, all devices
will send the state of their application data
to update all connected devices. Then the
application data exchange is event-based.

Communication principle

The communication is based on the
producer/consumer relationship. The PDO
communication is done by the first transmit
PDO (180h + node-ID) and up to 127
receive PDOs (180h + node-ID). The first
transmit PDO will be received by all
physical devices in the network except the
transmitter itself and is filtered through the
object mask. The object mask decides if
the data contents have to be evaluated
further or have to be discarded.

Figure 6: Communication model

Virtual devices

The application data is grouped in so
called “virtual devices”. Every virtual
device represents one functionality of the
physical device and every physical device
covers in minimum one virtual device.
Normally, a physical device covers a set of
virtual devices because of different
functionality’s. The transmit PDO contains
the object of exactly one virtual device,
therefore the communication between the
physical devices is virtual device based.

Figure 7: Physical device with virtual
devices

As shown in Figure 7, only the virtual
devices “talk” together. According to this, it
is necessary to connect physical devices
together, that have in minimum one of the
same virtual device implemented.

Every virtual device
contains four object
entries (Table 1).

The first virtual
device object is the
real application
data object to
distribute over the
bus (one functiona-
lity of the physical
device). This is e.g.
the sensor data of
a device. Every
change of the
sensor data will
cause a transmit
PDO and will be
received by all
other devices with
the receive part of
this virtual device
(second object of
the virtual device),
f i l tered by the
object mask (third

object of the virtual device).

VD1 VD2

VD3 VDn VDm

Device 1 Device 2

VD1 VD2

Device 4Device 1

CAN ID TPDO data

Object
mask

Object
mask

Object
maskaccept

accept

reject

0 7

Device 2

Device 3

180 +
Node ID

iCC 2003 CAN in Automation

12-5

Index Object
6xx0h application data (transmit data)
6xx1h data collection (receive data)
6xx2h object mask
6xx3h configuration

...

Table 1: Virtual device structure

The second virtual device object is the
data collection for the same virtual device
application data of other physical devices.
This is organized in a node-ID based array
and is an image of all same existing virtual
device data. The application may evaluate
the collection data to make decisions.

The third virtual device object is the object
mask to accept or reject the received
application data of other physical devices.
This is organized in a node-ID based bit
array and is normally changed by
configuration. The object mask has the
advantage to channel application data.

The fourth virtual device object is for all
configuration data of the virtual device. It
contains times, count values, distances,
threshold values, etc. to configure the
functionality of the virtual device,
respectively the physical device. This is
the area for the customer to make the
device work as he want. Pre-defined
default values gives the device a standard
behavior.

Virtual devices gives the physical device a
very clear and easy to understand data
structure.

Future perspectives

Uplifting the physical in- and outputs
(application data) to logical in- and
outputs, the system flexibility raises and
key words like “intelligent door” or
“intelligent room” becomes more and more
reality. This can be an access control to a
room or a room zone with complex
identification technologies (fingerprint-
reader, palm-reader, iris scanner, face- or
speech-identification, etc.). Furthermore
this technology simplifies the centralized
monitoring and configuration of such a
system, e.g. to forward disturbances or to
change the functionality of a door
dynamically. Building management will be
easier, because every door system can be
seen as a black box with defined
functionality and can simply be influenced
by logical commands.

Dieter Kuchenbecker
Effeff Fritz Fuss GmbH & Co. KGaA
Bildstockstr. 20, 72458 Albstadt
Phone: 07431 / 123-112
Fax: 07431 / 123-65112
dieter.kuchenbecker@effeff.com
www.effeff.com

