
iCC 2003 CAN in Automation

07-10

SpeedFace – A realtime window to a robot control

Prof. Dr.-Ing. Egon Sommer, Munich University of Applied Sciences
Dr.-Ing. Thomas Rienmüller, Reis Robotics GmbH

Dipl.-Ing. Franz Som, Reis Robotics GmbH

New applications require more complex and sophisticated sensors to be connected to
modern robot controls. Some tasks even need sensor based online generation or
manipulation of robot motion in realtime. Increasingly personal computers are used
for processing sensor signals and calculating control algorithms. This paper shows
the design and implementation of a universal CAN based connection between a
personal computer and a robot control, which was given the name SpeedFace. The
link is very flexible and operates in synchrony with the interpolation cycle of the robot.
It was developed as a basis and toolkit for experts to program new sensor supported
robot applications.

History

The roots of the project date back to the
year 1998. At the beginning the prime
objective was to use standards wherever
possible. Some promising announcements
of a software company concerning their
OPC solution based on CAN led to a first
development on this basis. Unfortunately,
it proved at a later stage, that the
necessary performance could never be
reached with this approach. So the project
group started to make a new concept for
the communication. It should guarantee
the lowest latency in operation and still be
flexible and adaptable to a wide range of
applications.

Requirements

The task of remote controlling movements
of a robot needs at least the following
amount of data to be exchanged (number
of bytes in brackets):
status information (4), position information
X,Y,Z and orientation A,B,C as floating
point figures in double resolution (6*8 =
48), plus axis positions in increments for
the main axis and for possible additional
axis ((6+6)*4= 48). This adds up to about
100 Bytes to be transmitted. With
additional information from sensors or
drives of the robot it ends up at about 150
to 200 bytes, which means about 25 CAN
telegrams of full length in both directions.
All this information has to be exchanged

within the interpolation cycle time of the
robot, which was 12 ms. The amount of
information is dependent on how many
additional items of information have to be
transmitted as feedback from the robot.
To address a broad range of possible
users the communication partner of the
robot control should be a personal
computer running under a Windows
NT/2000 operating system. The software
is produced as a DLL (dynamic link library)
and should have a C, C++ programming
interface. (Figure 1)

General design

The SpeedFace link is intended to be used
by researchers and developers who want
to program their own path generator or
influence the robot in a very special way
that is not supported by the built-in
software. In this paper this group is
referred to as ‘user’.
To guarantee a stable, jitterless time base
it was clear that the robot control has to be
the bus master. The CAN interface on the
PC must have the lowest possible delay.
This is the reason why an intelligent
interface card with its own processing unit
was not regarded as suitable. Processing
all the CAN messages by the main
processor leads to the lowest latency, but
also consumes some computing power.
With modern processors this is no big
issue anymore. The main CPU carries out
all the interpretation of the received CAN

iCC 2003 CAN in Automation

07-11

messages. The reaction time then is
mainly related to the interrupt response
time on the personal computer.

To get a most general solution all
system variables of the robot control
should be accessible by means of the
communication link.
The examination of the CAN Open
specifications revealed that it would be
possible to make a realization fully in
accordance with those definitions by using
PDOs, at the expense of rather limited
number of variables to be transferred. On
the other hand transmissions off all
variables on request via SDOs would
cause too much overhead. So the decision
was made to only use the basic network
management functions (startup, node-
guarding, etc) of the CAN Open standard.
The variable transfer itself is a little
different from the standardized rules to
achieve both performance and flexibility.
The approach takes into account that in
robot applications there is almost never
any change of the established connection
between sensor/computer and robot while
operating. So there was an obvious need
to design a two-phase concept.
First configure the variables in an
initialization phase and then transmit the
raw data with little overhead during
operation.
A rough calculation shows the remaining
possibilities when transmitting the
maximum sized 8 byte telegrams in a
12-ms cycle and accepting 80% busload:

Speed Max number of
telegrams

500 k 36
1 M 73

The calculated number of telegrams to be
transmitted will result in a busload of about
60-70% and make it clear that there
cannot be other devices on the same
CAN-Bus besides the robot control and
the PC. Also the link has to be operated at
the maximum possible speed of 1 MBd.
The two devices can use all of the
available PDO address range.
In order to ensure efficiency when
transmitting data that may not be aligned
to the 8-byte spacing of the telegrams, all
the data is considered to be one large byte
array.

Realtime under Windows NT /2000

One other main design objective besides
performance was the minimization of
latency times. Knowing that the chosen
operating system is not ideal, a lot of effort
was made to get the best out of the given
situation. The cycle time is given by the
robot control. The functions a user wants
to be executed should be activated
immediately after reception of the last
CAN message in a transferred block.
A key design aspect was to get most of
the user application running at the highest
possible priority level. So other programs
running on the personal computer cannot
disturb it. The SpeedFace DLL offers two
different possibilities of how user programs
can be executed. One is the execution as
a high priority thread under the control of
the windows dispatcher. The other is to
run the code in kernel mode of the
operation system. The latter is much
faster, but has also got several limitations
and needs advanced knowledge of the
user. To enable developers to compile
their own application and as a proof of
concept two example application were
developed. These are supplied including
source code.
Unfortunately, the interrupt level of a CAN
interface card in a computer can only
partly be adjusted and is BIOS dependent.
This implies that reaction time depends on
the time that other interrupts with higher
priority consume. Also very important are
time periods during which interrupts are
disabled. So according to our experience
the biggest effects arise when using
improper or inefficiently programmed
device drivers on the computer. Figure 2
shows the difference times in receiving
subsequent packages. The results were
obtained on a 1 GHz computer with
running file checks and copying files over
the network as background computing
load. All of the measurements are within
+/-100µs, but some exceptions (e.g. start
of a TV application), which are not shown
in the diagram, could be generated where
the latency reached up to 10ms. So in
general execution is fast enough, but
cannot be guaranteed because other
software may disturb it.

iCC 2003 CAN in Automation

07-12

Application Examples

In order to show the versatility of this new
link an example program was developed
which allows the display and manipulation
of all system variables. (see figure 3) The
second example is a demonstration
program where the robot can be moved to
any given position. In this application all
the realtime performance is needed,
because the generation of the path is done
online on the personal computer and not in
the robot control. In both cases it is
absolutely crucial that the user is
absolutely aware of what he is doing. If an
external device like the PC takes over the
control of the movements then there is a
total loss off the build in security functions.
The same is the case when manipulating
system variables like e.g. traveling limits.
So this is the main trade off that has to be
taken, when allowing full flexibility.
Based on the toolbox two first real
applications are under development. The
first is an online optimization of drive
control parameters. A university institute is
optimizing and testing new adaptive
parameter setting algorithms. The results
are now being introduced into the series
versions of the robot.
A second application is the use of a robot
in man-machine-cooperation task. There
sensor information is combined with
knowledge that can be derived from CAD
models. The main benefit is, that the robot
can be totally remote controlled and the
gathered sensor information can be used
for adapting the behavior/methods in each
cycle of the task. By this means new
features can be put into practice that are
usually not part of a state-of-the-art robot
control.

Conclusion

A powerful new interface for robots has
been developed and has proved that it is
meeting the needs of new industrial
applications.
The steady trend to ever faster robot
controls may well make it necessary to
reconsider other bus systems for future
high-speed applications of robots. The
chosen approach will still be valid for new
solutions.

Prof. Dr.-Ing. Egon Sommer
Munich University of Applied Sciences
Address: Lothstrasse 34
 D-80335 Muenchen
Phone +49 89 1265 1380
Fax +49 89 1265 1299
E-mail sommer@ee.fhm.edu
Website www.ee.fhm.edu

Dr.-Ing. Thomas Rienmüller
Company: Reis Robotics
Address: Industriegebiet an der B426
 D-63785 Obernburg
Phone +49 6022 503 576
Fax +49 6022 503 110
E-mail t.rienmueller@reisrobotics.de
Website www.reisrobotics.de

Dipl.-Ing.Franz Som
Company: Reis Robotics
Address: Industriegebiet an der B426
 D-63785 Obernburg
Phone +49 6022 503 560
Fax +49 6022 503 110
E-mail f.som@reisrobotics.de
Website www.reisrobotics.de

iCC 2003 CAN in Automation

07-13

Figure 1: configuration of the link

Figure 2: time measures receiving packages

Sensor
processing and
control algorithm

CAN-bus

SpeedFace-
DLL

CAN-
card

personal computer

sensor

Jitter

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Packages 1..n

D
ev

ia
ti

o
n

 in
 µ

s

Series1

iCC 2003 CAN in Automation

07-14

Figure 3: variable monitor

