
iCC 2005 CAN in Automation

11-1

A proposed method to determine dynamic interoperability
of CANopen devices

Bruce M. Decker, P.E., Schneider Electric, Inc.
Dipl.-Ing. Roland Rauch, Berger Lahr GmbH & Co. KG

Interoperability between CANopen devices is universally desired by most CANopen
device integrators and other users. To this end, the CiA has defined a CANopen
Conformance Test which checks EDS files and the devices for adherence to CiA
specifications. However, these checks are against static requirements, implying that 2
devices which pass the Conformance Test may still not be able to actually
interoperate. The CANopen protocol deliberately does not prescribe the dynamic
timing parameters needed for true device interoperability, as different applications
have differing requirements. Recognizing this fact, this paper does not set out to
prescribe such specifications. Instead, building on TR 308, this paper describes a
standard set of time value measurement definitions and a means for sharing these
dynamic values between CANopen devices which provides a user with a means of
quickly assessing interoperability & compatibility.

The Issue of Performance and Dynamic
Interoperability

An engineer recently selected a low-cost
general purpose IO device for his
CANopen-based application. His bus
master was from a trusted manufacturer,
and the DS 401 device was supposedly
CANopen-compliant. But when he
connected them, the IO device never
came on-line. Convinced he had received
a defective device, he unplugged the CAN
cable and looked for the vendor’s phone
number. But when he looked up at the
device again, he noticed that the IO device
indicators showed it was working! He
reconnected the device and was able to
configure it. Upon further investigation, the
problem was uncovered. The IO device
required 12 seconds to boot up and be
ready to communicate. The bus master
had a 1 second default timeout for SDO
requests, after which it sent a Reset Node
message to the device. The devices never
had any chance to communicate until they
were disconnected from each other.

Another engineer tried to transmit a PDO
to an analog output device every 2 to 3
milliseconds for the application, but was
getting an extraordinary amount of bus
errors. Finally, the engineer called the
vendor, only to be informed the device
was only capable of processing an RPDO
every 5 milliseconds.

This same engineer selected a general
purpose input device for his application.
To insure stability of his control algorithm,
he set his SYNC message to be
transmitted every three milliseconds. Once
again, his loop would tend towards
instability. It turned out that while the best
SYNC response time was in the range of
1.5 milliseconds, the input device would
frequently take over 4 milliseconds to
respond to the SYNC.

As these true stories illustrate, if a
designer wants to use a CANopen device
within their application, they cannot just
select a device from a catalog that will
meet their application requirements. They
must start there, but then they must
perform a second step: they must connect
the selected device into their CANopen
network, and verify that it interoperates
with all the other devices on the network.
In many cases, it will not interoperate
satisfactorily, and sometimes, not
interoperate at all. This may leave the user
frustrated with the device, the vendor, and
possibly even their decision to use the
CANopen bus for their system. Their
frustration is compounded because
frequently, the selected device is certified
as having passed the conformance test.
Yet obviously, there is no a priori means of
knowing a device will work.

What prevents these users from being fully
satisfied with their CANopen experience?



iCC 2005 CAN in Automation

11-2

The devices were certified to be
CANopen-conformant. But, they still did
not interoperate with other CANopen-
conformant devices, and some of them
were even from the same manufacturer!

The answer to this question is fairly
simple: the different device timings were
incompatible with each other. There are no
dynamic interoperability requirements
prescribed by the CANopen specifications.
A device manufacturer is free to design a
CANopen device with whatever timings
and performance they deem appropriate
for their and/or their customer’s needs.

What Does the Current Conformance Test
Accomplish?

The current CiA conformance test
accomplishes an important piece of overall
compliance testing. As currently specified,
it tests for what we call pseudo-static
interoperability. That is, it looks primarily
for conformance to static requirements for
CANopen devices. This currently consists
of checking the format of the EDS file and
checking for required entries in the object
dictionary. The test also exercises the
SDO protocols to look for conformance to
the EDS file and DS 301 requirements.

There is currently an effort in the CiA to
prescribe conformance testing for DS 401
and DS 402 devices.

What About TR 308?

Technical Report 308 describes a series of
bit rate dependent timing measurements
for CANopen devices, such as boot up
time and SDO response times. The report
makes the CiA’s position on prescribing
timing specif ications quite clear:
“Regarding most other bus systems, it is
fairly straight-forward to measure and
publish communication performance
figures for most node types. With
CANopen this is not the case: the
capability of CANopen to tailor the
communication to the application needs
makes it very difficult to determine
valuable performance figures that are
independent of the specific network set-
up.” The authors are in agreement with
this position for CANopen in general.
Performance limits & expectations should

not be unilaterally established by the CiA,
as it is counter to the goal of openness.
However, we also believe that the lack of
standard performance information and
agreement on acceptable limits for specific
classes of applications may well detract
from the widespread acceptance of
CANopen. Users may be unwilling or
unable to do performance testing on all
possible devices for their application. The
authors  believe, based upon input from
users, that they want a statement of
con fo rmance  t ha t  gua ran tees
interoperability with the other CANopen
devices in their application. Therein lies an
inherent paradox, of openness vs.
conformity.

What Is Needed, Long Term

To solve this issue, application-based user
and device supplier communities, (e.g.
motion, medical devices) must come
together to agree upon performance
numbers which are acceptable in the
scope of the specific application. Once this
is accomplished, a test can be written to
test  the device’s conformance to the
community’s performance requirements.

The Goal of This Proposal

In order to prevent a proliferation of
performance standards which may be
contrary to each other, there first must be
a basic framework established for testing
and reporting of dynamic interoperability.
Based upon our actual experience
integrating real CANopen devices, we
propose a framework for assessing &
report ing dynamic interoperabil i ty
parameters within the CANopen
community at-large.

Important Performance Measurements

In the authors’ experience, the primary
performance issues were related to the
following timings:

• SDO Response time;

•  Minimum RPDO period (not defined in
TR 308);

• SYNC Reaction Time;



iCC 2005 CAN in Automation

11-3

•  Boot-up Time from power-on (not
defined in TR 308);

• Boot-up Time. (as defined in TR 308).

•  PDO Response Time (as defined later
in the paper).

There are certainly other timings which
may provide useful information in certain
cases, and we provide some suggestions
later in the paper.

Modeling a CANopen Device

In order to discuss performance
measurements of CANopen devices. It is
essential to show an accurate model of the
devices.

Figure 1: Model of CANopen Slave Device

Figure 1 shows the standard model of a
CANopen slave device, but extends the
standard model by showing a common
composition of object dictionary entries.
There are the essential, performance-
related objects, such as control registers,
output registers, and input registers that
are frequently, but not always, mapped to
PDOs. Then there are the non-essential,
but performance-related entries, such as
the Store Parameters object (1010h).
Then there are the objects which neither
define the essence of a device, or have
any impact on performance. Visible string
identity objects such as 1008h would be in
this last category, as would many

diagnostic objects. It is important to
distinguish between these different types
of OD entries when characterizing device
performance, as a longer response time
for a write to the store parameters object,
or reading of a visible string which may
physically be stored in a relatively slow
memory (e.g. a serial RAM) can unfairly
skew the response time averages of other
entries which are inherently more
important to the user’s application. For the
purpose of having a shorthand means of
distinguishing these different entry types,
we label the essential performance entries
as “Type 1”, the non-essential
performance entries as “Type 2”, and the
non-essential, non-performance entries as
“Type 3”.

Measurement Proposals

One of the issues with the current edition
of TR 308 is that all the measurements are
bit-rate and message-size dependent. In
order to give a clear picture of the device
performance which a user can use to
select a device, the manufacturer must
test at all possible bit rates and response
message sizes. The user may now have
too much information! Interoperability is
still not guaranteed with this scheme.

For this reason, the authors propose that
dynamic interoperability performance
information be defined independent of bit
rate and response message size.

There are two main topics that have to be
considered for time measurement. The
first is the reaction time of the DUT (device
under test) to an event on the CAN bus
(CAN message), and the second is
reaction time of a physical input (e.g. a
digital input). As there are several sources
of influence on the timing of a device, it is
necessary to know the main mechanisms
by which a device is designed and built.
This will be discussed in a later section.

About Time Measurement

Depending on the measurement accuracy
requirements, there has to be
consideration that the selected CAN bit
rate has significant influence on the
results. Usually, measurement  on CAN is
done by using the occurrence of CAN

CANopen Slave Device

Non-Essential, 
Non-Performance Entries

Non-Essential 
Performance Entries

Essential 
Performance Entries

CANopen Communication 
Interface Application 

Interface

Object Dictionary



iCC 2005 CAN in Automation

11-4

interrupts. In a CAN diagnostic tool, each
received message causes an interrupt and
the exact time of this interrupt can be
captured. This provides precise
information on the time interval between
two messages, but not on the device’s
inherent performance.

However, the actual reaction of a device is
already finished when the device starts to
transmit the corresponding response
message. As an example, consider an
SDO response telegram which is an 8
data byte CAN message. It has, at 125
kbit/s, a duration between 0.89 and 1.04
ms. If the result of the SDO response time
measurement is 2 ms, this value has a
large error - 80.2% up to 108.3% with
respect to measuring the actual reaction
time of the device. With a lower bit rate the
result is even worse. If the measured
reaction time has a greater value, then the
error is lessened (Figure 2). The question
is, in which range will the reaction time be
expected? And, how much measurement
accuracy is required?

Figure 2: Measurement Error in % in
relation to the time between rx- and tx-
interrupt

As a result of this measurement bias
inherent in the standard measurement
definitions, a measurement method was
developed that eliminates the dependency
of the measurement result on the CAN bit
rate and message size. The principle of
this method is that the time of the request
is captured by the tester exactly at the
moment when the CAN message rx-
interrupt occurs on the DUT, meaning the
request has been transmitted completely.
The device’s response time is calculated
from the tx-interrupt of the DUT’s
response, minus the duration of the

response message. With a simple
algorithm, it is possible to calculate the
real duration of this message as a function
of its contents. For a detailed explanation,
see Figure 3 which shows the timing from
the DUT’s point of view.

Figure 3: Reaction Time of a Device

The time ti is the time between rx- and tx-
interrupts and ttx is the duration of the
received message. These two values are
used to calculate the device’s response
time, tr:

tr = ti – ttx

With this method, it is possible to
distinguish the response time of a CAN
device independently of the actual bit rate.

Physical Reaction Times

This discussion does not attempt to
address the physical reaction times of a
device, i.e. the amount of time from an
event on the CAN bus until the physical
output is at the commanded level (reverse
this sequence for an input device). The
authors do not address this here because
it is a topic all to itself. For example, since
a physical input on a DS 401 is not
necessarily electrical (it can also be
pneumatic, hydraulic, etc.) the authors
believe it is too large a subject to address
here. Therefore, this discussion is limited
to observable CAN bus behavior. This
does not diminish its importance to the
application, however.

Device Structures

One significant aspect of timing behavior
is the device’s software structure and
selected OS (operating system). If the
software is built up in a completely



iCC 2005 CAN in Automation

11-5

deterministic way, it means the same
operation always requires the same
amount of time. In contrast, the
measurement result will be different when
compared to a system where, for example,
the operating system or other design
features will add some random timing
components to the device’s response time
(see Figure 3).

Figure 4: Different Influences on Device
Response Time

The more random the different time
components are, the more the total
response times will vary. To explain this
feature in more detail, the SDO response
time will be used. A SDO read request is
transmitted to the DUT, and  the duration tr
will be evaluated. If the same object
dictionary entry is accessed several times,
and there is no other influence on the
reaction time, then the maximum response
time will be the same as the average
response time (Figure 5). Such a device
allows a very predictable access to its
object dictionary. This type of device is
obviously unrealistic.

Figure 5: Predictable Device Response
Time

Under more realistic conditions the device
shows a statistical distribution of reaction
times and the average response time does
not give sufficient information about the
maximum response time.

From the statistical point of view, the
maximum response time in this case is
defined as the smallest time in which the
device responds to a request with a
probability of 1.0.

Figure 6: Distribution of Device Response
Times

A similar distribution will probably occur if
the SDO access is expanded to all object
dictionary entries of a device, more or less
independently of the device’s structure. If
by means of a series of measurements a
reliable value for the maximum device
response time can be given, then the
overall performance of a CANopen
network can be increased significantly. For
accuracy, the SDO response time is
measured for each type of OD entry
shown in the model. With this knowledge,
configuration of CANopen devices within
the bus master can be sped up, as each
device has its own SDO timeout and not
just the maximum timeout of the entire
network (in this case, the one of a lower -
performing device). Of course, this would
require the bus master to support a
separate timeout set for each connected
device.

If we translate this result over to PDO
response time, where the principles
remain the same, this will also lead to
higher performing CAN communication.
PDO response time in this case is defined
as the duration between the reception of a
command by PDO and the transmission of
the corresponding result. For example, in
a servo drive application, the motion
controller sends a new velocity command
value and gets as a response, the actual



iCC 2005 CAN in Automation

11-6

motor posi t ion back using an
asynchronous PDO transmission type. If
the PDO response time is highly
predictable, with a known range of
variance, then even control loops can be
closed over the CAN bus by means of
PDOs as deterministic communication can
be guaranteed!

Consequences for Controller Devices

All these aspects we have discussed can
only be used to effect if controlling devices
are enabled to use the obtained
information on device response
capabilities and performance. Therefore, a
sufficient means is required that makes
these values accessible to configuration
tools and controlling devices.

A first way could be that the controlling
device or the configuration tool executes
the performance measurement of the
devices inside a given network. But this is
really not feasible at all, as a lot of
accurate measurement cycles are required
which will consume a huge amount of
time. The number of measurements and
their precision will have a considerable
impact on the quality of the results. In
addition, this method is contrary to the
stated goal of making CANopen simpler
for the user.

Another attempt leads to the proposal to
enlarge the EDS file to include these
measurements, or later on, the CANopen
XML device description. Having a certified
performance measurement tool will allow
device manufacturers to provide precise,
reproducible and comparable results. As a
first step, performance information could
be placed inside an EDS within a
[Comments] section. With a suitable
parsing tool, a CANopen configuration tool
would be able to derive these data from
the [Comments] section. This allows the
performance information to be available to
the user without requiring a change to the
EDS file specification.

Eventually, adding an additional section in
the EDS file which contains the device’s
performance values makes them available
to any controlling device or configuration
tool that is capable of processing EDS
files. These approach would have the
considerable advantage of providing the

information in a way consistent with all the
other information in the EDS. For example,
performance entries could appear in the
EDS file as follows:

[DevicePerformance]

AverageType1SdoResponseTime=

MaximumType1SdoResponseTime=

AverageType2SdoResponseTime=

MaximumType2SdoResponseTime=

AverageType3SdoResponseTime=

MaximumType3SdoResponseTime=

AveragePdoResponseTime=

MaximumPdoResponseTime=

AveragePdoTurnaroundTime=

MaximumPdoTurnaroundTime=

MinimumPdoPeriod=

MinimumSyncInhibitTime=

AverageRtrResponseTime=

MaximumRtrResponseTime=

AverageBootUpTime=

MaximumBootUpTime=

AveragePowerUpTime=

MaximumPowerUpTime=

Figure 7: EDS Extension for Performance

Proposed Framework for the Short Term

In the short term, we would suggest device
manufacturers follow the following
procedure for reporting dynamic
interoperability numbers:

1. Divide the Object Dictionary objects
into Types 1, 2 and 3.

2. Measure the SDO response time for
each object in each OD entry type to
get a statistically significant average &
maximum time.

3. Using the default or a typical
configuration, measure the other
timings outlined in the paper. There is
no need to measure a timing if it does
not make sense for a specific device
(e.g. RTR response times are not
necessary for devices that do not
support RTR).

4. Report these numbers, using the
suggested labels, in a [Comments]
section of the EDS files.



iCC 2005 CAN in Automation

11-7

These numbers would also be useful on
the device’s technical data sheets.

Once the numbers are available, the
application engineers can then use the
numbers to perform worst-case timing
analysis on their systems.

Framework for the Long Term

The authors realize this is a very early
work in what promises to be an
evolutionary process. We have suggested
some possible changes to EDS files and
CANopen master devices to improve
interoperability. But we do not pretend that
our ideas are the only good ideas for
solving these dynamic interoperability
issues. In the end, it will be the application
communities coming together to set
reasonable and acceptable limits for
themselves which will make using
CANopen devices a completely
satisfactory experience.

Summary

All possible performance parameters have
not been covered in this discussion, but it
will be easy to enhance the performance
section by more entries. As an important
aspect of this discussion, the question
remains: which of the entries in this
section will be optional and which
mandatory? This can only be answered by
the application communities themselves.
The authors’ hope is that this work will
give those communities a solid place to
begin.

Acknowledgement

The authors would like to thank Messrs.
Ken Lee, Steven Adiconis, Sylvain Olier,
Everett Kimball, Kerry Van de Steeg, and
Rick Blair of Schneider Electric, Inc., for
their diligent background work which made
this paper possible.

References

CiA Technical Report 308, CANopen
Performance Test, Version 1.0, 1st

December 2001, CAN in Automation e. V.

Bruce M. Decker, P.E.
Schneider Electric
American Global Products Division
Mail Stop 7-3B
One High Street
North Andover, MA, 01845-2699 USA
Phone: +1-978-975-9617
Fax: +1-978-975-9110
E-mail: bruce.decker@modicon.com
Website: http://www.modicon.com

Dipl.-Ing. Roland Rauch
Berger Lahr GmbH & Co. KG
Maybachstraße 13
88094 Oberteuringen-Neuhaus
Germany
Phone: +49 (0) 7546 920-48
Fax: +49 (0) 7546 920-80
E-mail: roland.rauch@berger-lahr.com
Website: http://www.berger-lahr.com


