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Development and verification of in-vehicle networks include multiple design layers. 
These layers include the logical layer represented by the software application, the 
associated data link layer, and the physical connection layer containing bus 
interfaces, wires, and termination.  Verification of these systems in the early stages of 
the design process (before a physical network is available for testing) has become a 
critical need.  As a result, the need to simulate these designs at all their levels of 
complexity has become critically important. In-vehicle networks can be simulated on 
many different abstraction levels using various model levels and modeling 
technologies.  Early in the development process, analyses can be performed without 
having available any detailed models from the chip manufacturer or component 
supplier.  Later in the development process, more accurate models can be integrated 
into the simulation process, including those provided by suppliers and chip 
manufacturers. This paper demonstrates a portion of the development and verification 
process of the physical layer of an in-vehicle CAN Bus at Volkswagen using the Saber 
simulation environment. This paper also demonstrates integrating portions of the 
logical layer into the simulation so both logical and physical layers can be simulated 
together. 

Introduction 

Today’s automotive networks are very 
complex and combine a couple of 
networks together into one heterogeneous 
network environment. Each sub- network 
might use different protocols or similar 
protocols with different transmission rates. 
Over the past 10 years CAN has become 
the standard in the automotive industry for 
applications like powertrain, comfort and 
infotainment. A complete CAN bus 
network contains the following 
components: 

• CAN node 

• Transmission line 

• Termination 
 

Usually the applications require additional 
circuitry in order to ensure immunity 
against EMC effects. As shown in Figure 1 
every CAN node includes four main 
components: 

• CAN transceiver 

• CAN controller 

• µ-controller 

• Interface to sensors and actuators 

• EMC protection circuit 
 

The physical layer of a CAN bus network 
contains the transmission medium (wire 
harness), transceiver, the physical 
signaling of the CAN controller and any 
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additional circuitry necessary to achieve 
acceptable EMC behavior. This article 
describes how to model and simulate this 
physical layer. 

Problems when verifying the physical layer 
of a CAN network 

The problem of verifying the physical layer 
of a CAN bus network is to guarantee 
sufficient signal integrity in order to ensure 
that the CAN controller always samples 
the correct bit value representing the 
current state on the bus. Unlike the digital 
controller signals (Tx, Rx), signals on the 
physical layer (CANH, CANL) are analog 
quantities. The integrity of these analog 
signals depend on several factors like 
network topology, network interface, 
transceiver etc. The topology includes the 
structure of the network (e.g. a star 
architecture or a linear bus with stubs), the 
number of ECUs and the length of the 
transmission lines. The minimum and 
maximum number of ECUs are fixed for 
the specific vehicle platform. However the 
number between minimum and maximum 
depends on the configuration of the 
individual vehicle. The interface between 
the ECUs and the transmission lines 
consists of passive elements like 
capacitors, ESD protection (e.g. varistors), 
termination resistors and common mode 
chokes. Each of these elements is 
affected by tolerances due to 
manufacturing inaccuracies or 
temperature dependencies. The bit timing 
configuration is one of the important tasks 
of the verification process. It specifies 
when the CAN controller samples the bus 
and determines the transmission rate in 
the network. It significantly affects the 
performance of the CAN bus network 
since a poorly configured bit timing can 
force a CAN node to go into the error 
passive state during an arbitration phase. 
Unlike the digital signals of the controller 
the signal behavior on the bus is analog. 

The verification of the physical layer of the 
CAN network must ensure that the worst 
case combination of parameters and 
tolerances assures sufficient signal 
integrity so that each allowed bit timing 
configuration leads to a correct sampled 
value. Verification by measurements on 
prototype vehicles is insufficient because 

the worst case configuration is usually not 
available during the early stage of the 
development process and the values of 
the tolerances are distributed randomly. 
Changing an existing prototype topology 
would significantly increase the 
development costs and time. Therefore 
the system simulation is a fundamental 
requirement for the verification of this kind 
of application in the early stages of a 
design process. 

Simulation models 

The complete CAN network and its 
components were modeled and simulated 
in the Saber Simulation environment. 
Saber is an analog/mixed signal simulator 
that provides a complete environment for 
modeling, simulation and post processing 
in order to analyze a wide range of 
applications. Designs can be created very 
rapidly via schematic entry. Saber 
provides both basic analysis types like 
transient (time domain) and AC (small 
signal) analysis as well as advanced 
analysis methods like Monte Carlo, which 
is very powerful for analyzing the effects of 
parameter tolerances. Saber’s automation 
methods have also been used in this 
example in order to automate the 
simulation and post processing flow. The 
following sections describe the models 
required for the simulation. 

Overall simulation model of a CAN network 

The overall simulation model contains five 
CAN nodes including all required 
components in order to simulate the 
physical behavior of the communication 
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system. Every node includes EMC 
protection circuitry, transceiver and CAN 
controller. All nodes are connected via 
physical wires modeling the behavior of a 
twisted pair transmission line. Figure 2 
shows the architecture of the overall 
simulation model. 

Transmission line 

The transmission line is one of the critical 
parts in the simulation model. It must 
include effects like reflection and crosstalk 
but must also achieve good simulation 
speed as the overall CAN simulation 
model is intended to be used in analyses 
that are computationally intensive, e.g. 
Monte Carlo. Figure 3 compares the 
transient behavior of the simulated wire 

model with experimental measurements. It 
can be seen that the difference between 
measurements and simulation is 
sufficiently small and the model maps very 
accurately the dynamic behavior of the 
transmission line. 

Common mode choke 

The common mode choke is modeled 
hierarchically with coupled inductors and 
their resonance behavior. Characterization 
of the model parameters is performed by 
measurements in the frequency and time 
domain. The input resistance (odd and 
even mode) was determined in the 
frequency domain by measuring the 
complex resistance values (magnitude and 
phase). Different common mode chokes 

can be modeled by characterizing this 
generic model using different parameter 
sets obtained from measurements. The 
model provides accurate AC and transient 
behavior while exhibiting excellent 
simulation speed. 

 

Transceiver 

The simulation model of the transceiver 
must be very accurate as it has a 
fundamental impact on the signal integrity. 
Therefore it is recommended to obtain this 
model directly from the semiconductor 
manufacturer. This application uses the 
TLE 6250 transceiver chip, a high speed 
CAN transceiver from Infineon. The model 
was especially developed for system 
simulation and is approximately 16 times 
faster than the transistor circuit model of 
the entire IC. Figure 5 shows the 

hierarchical architecture of the CAN 
transceiver model. The model considers 
all required functions like over 
temperature, low supply voltage, short 

circuit and real current consumption. It 
covers the complete range of input and 
output voltages, supply voltage and 
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temperature limits specified in Infineon’s 
data sheet for the TLE 6250. Applied in 
various test benches the simulation model 
has delivered both very accurate results 
and good simulation speed. 

Simplified CAN controller 

For the verification of the physical layer 
only a reduced set of the CAN controller’s 
functionality is required. The simplified 
model contains some functions of a CAN 
controller according to CAN specification 
2.0 and ISO 11989 and is intended to 
simulate the timing and acknowledgement 
behavior of a CAN controller. Figure 6 
shows the infrastructure of the simplified 
CAN controller model. The model has four 
connection pins: 

• Osc (Oscillator) 

• CAN_state 

• Tx 

• Rx 

 
The pin CAN_state shows the state that 
has been sampled by the CAN controller 
at its Rx pin. This determines whether the 
correct value has been sampled or if the 
bit timing configuration is incorrect. The 
BTR parameters (TSeg1, TSeg2, Sample 
mode, BRP and SJW) can be specified by 
the user as model arguments of the 
controller model. The timing behavior 
determines the bit time (TBit), the sample 
point (SP), the sample mode (single or 
triple) and the SJW. In single sample 
mode sampling proceeds between two tQ 
at the programmed value. In triple sample 
mode sampling proceeds in the previous 
three tQ from the programmed value. The 
valid value is calculated by majority vote. 

One of the major functions of the timing 
behavior is the resynchronization as 
shown in Figure 7. The resynchronization 
occurs at the edges from recessive to 
dominant state when the CAN controller 

recognizes a falling edge at its Rx pin. If 
the edge occurs in TSeg1 (not in the 
SyncSeg, but before the sample point) the 
receiver interprets this as a delayed edge 
from a slower transmitter and TSeg1 of the 
receiver will be extended. If the edge 
occurs in Tseg2 (between sample point 
and SyncSeg), this is interpreted as early 
edge of a fast transmitter and TSeg2 of 
the receiver will be shortened. If the phase 
error is smaller than SJW, the relevant 
segment is corrected by the value of the 
phase error, otherwise by SJW. In the 
case that the phase error is greater then 
the SJW, the CAN controller cannot 
completely resynchronize the appropriate 
CAN node within a single bit timing cycle. 
All receivers that receive a correct 
message acknowledge this by transmitting 
a dominant bit. The transmitter sends a 
recessive bit in the same time slot. The 
bits before and after the acknowledgement 
of the receiver are recessive. The 
complete algorithm of the timing and the 
acknowledgement behavior of the CAN 
controller can be modeled as state 
machine. StateAMS enables graphical 
modeling of state machines containing 
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analog and digital device behavior. The 
benefit of this technology is that it frees the 
user from dealing with any modeling 
languages as the entire behavior is 
described graphically in conjunction with 
analog equations and digital assignments. 
StateAMS creates the simulation model 
on-the-fly based on the state diagram 
information, making it easier for the model 
developer to alter and maintain complex 
models without hand-coding in modeling 
languages like MAST, VHDL-AMS or 
Verilog. Figure 8 shows a portion of 

the CAN controller’s state diagram model 
in StateAMS. States are represented by 
circles indicating the current operating 
point of the controller. The controller 
changes from one operating state to 
another as soon as the transition that is 
connecting these states becomes true.  

 

Simulation of the CAN network 

The required simulation described 
previously can be combined into a test 
bench for the purpose of verifying the 
behavior of an entire CAN bus network. 
Figure 9 shows the test bench including 
five CAN nodes connected together via 
transmission lines to form a star 
arrangement. Each CAN node is modeled 
hierarchically, consisting of the following 
components: 

• CAN controller including baud rate 
prescaler and bit timing state 
machine 

• CAN physical layer 

• Oscillator 

 

The hierarchical controller model contains 

the BRP and the BTL. The state machine 
of BTL has been modeled as a state 
diagram and the BRP has been 
implemented directly in MAST, Saber’s 
modeling language. The physical layer 
includes the CAN transceiver, connected 
to the voltage regulator and the 
appropriate termination circuits, consisting 
of stabilization circuit, choke coil and 
additional capacitors. The oscillator is 
modeled as a digital pulse source that 
samples the CAN controller. 

 

The first test bench example illustrates 
how the synchronization of the CAN nodes 
works. ECU1 sends a series of 15 bits to 
the bus. The bit stream contains a series 
of falling edges (recessive to dominant) in 
order to show the synchronization 
activities of the ECUs. All ECUs are 
supposed to send an acknowledgement bit 
(dominant state) after receiving a series of 

Figure 8 State machine 
Figure 9 CAN test bench 
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15 bits. The controllers are configured as 
shown in Table 1.  

 

 

Table 1 

The entire bit time is divided into nine time 
quanta. In conjunction with an oscillator 
frequency of 9 MHz this results in a 
nominal bit time of TBit=2µs and 
transmission baud rate of 500 kB. Figure 
10 shows the simulated differential bus 
voltage of the CAN architecture measured 
at ECU5. ECU1, acting as transmitter, 
sends the bit stream “001010101010101” 
to the bus and the other ECUs 

acknowledge this bit stream by sending a 
dominant bit which causes an increase of 
the bus voltage. The simulation results 
also allow the designer to analyze and 
verify the bit timing of the ECUs. Figure 11 
illustrates the bit timing of ECU5. The 
upper signal “tq” indicates the time 
quantum of the bit time where the CAN 
controller is currently working. The middle 

signal is the receive signal “rxd” which is 
measured at the transceiver’s digital 
receive pin connected to the CAN 
controller. It shows the bus status being 
detected by the receive network of the bus 
driver. The lower signal “can_state_ecu5” 
reflects the received bit sampled by the 
CAN controller at its receive pin connected 
to the transceiver output “rxd”. These 
signals allow the designer to track the bit 
that is sampled on the bus and follow the 
synchronization of the protocol engine 
during a message frame. According to 
Figure 19, the controller detects a falling 
edge in TSeg1 (tq=5) which means it has 
to resynchronize as the falling edge has 
been detected outside of the SyncSeg. As 
the edge falls into TSeg1, TSeg1 is 
extended and the sample point moves 
automatically to the right on the time axis 
and the  entire bit time is extended as well.  

In this example the phase error is equal to 
4 tq. Due to the fact that the 
synchronization jump width limits the 
maximum synchronization step to 3 tq, the 
CAN controller cannot completely 
compensate the phase error and a phase 
error of 1 tq remains. The next two bits do 
not contain a falling edge, meaning that 
the CAN controller has no opportunity 
during this time to synchronize the CAN 

Parameter Value 

Frequency 9 MHz 

TSEG1 5 tq 

TSEG2 3 tq 

BRP 2 

SJW 3 tq 

Sample mode Single 

Default SP 

Shifted SP 

Tseg1 Tseg1 

Figure 11 Sampling & timing 
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node. The next synchronization happens 
when the fourth bit is being sent. During 
this time the falling edge is detected in 
tq=2 causing a phase error equal to 1 tq. In 
this case the controller can compensate 
the phase error completely and the CAN 
node is completely resynchronized. For 
this scenario the correct bit stream has 
been sampled by the CAN controller, 
however the frequency tolerances of the 
oscillators have not been taken into 
account. The following test bench applies 
the same CAN network architecture with 
two modifications. The oscillators of ECU1 
and ECU5 are modeled with a tolerance of 
2% that might be caused by manufacturing 
variations or temperature dependency. 
The oscillator of ECU1 is assigned a 
frequency of 9.18 MHz and the oscillator 
of ECU2 has a frequency of 8.82 MHz. 
Another situation that must be considered 
occurs when a series of five dominant and 
five recessive bits (0000011111) is being 
sent. This specific bit stream does not 
contain a falling edge that allows the 
controller to resynchronize. A series of five 
equal bits in a row is the maximum 
number as the controller automatically 
inserts a stuff bit after five identical bits. 
This bit has the inverted value of the 
previous bit in order to ensure that the 
controller has the chance to resynchronize 
during a message frame. Figure 12 shows 

the result of this scenario. The transmitter 
sends the bit stream “110000011111001”. 
The differential bus voltage of ECU5 
shows an additional dominant status of the 
bus after the acknowledgement bit. This is 
not allowed as the bits prior and after the 
acknowledgment must be recessive. This 
indicates there is something going wrong 
in the system which seems to be related to 
the timing of the ECUs. Taking a deeper 
look into the timing of ECU5, shown in 
Figure 13, confirms this suspicion. The 
first falling edge of the bit stream sent by 
ECU1 is detected in the controllers 
SyncSeg of ECU5. This means that no 

synchronization activities are required as 
the receiver is in phase with the 

transmitter. During the next ten bits no 
synchronization happens as there is no 
further falling edge which can be applied 
by the controller in order to synchronize 
the appropriate node. The controller 
correctly samples five dominant bits after 
the falling edge. When the bus status 
changes from dominant to recessive, the 
controller detects four recessive bits and 
then a dominant bit. Even though the 
transmitter has sent five recessive bits, the 
receiver detects only four of them. The 
reason for this is the situation occurring 
after the detection of the fourth recessive 
bit, since the falling edge after the fifth 
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dominant bit occurs prior to the sample 
point for this bit. This means that the 
controller drifted out of the synchronized 
mode as no further synchronization was 
possible, which is required to compensate 
the oscillator tolerances and the 
asynchronous behavior of the oscillators. 
Figure 14 shows that the falling edge after 
the fifth recessive bit is detected in the 
sixth time quantum right before the sample 
point. The result is that the controller 
samples a dominant bit instead of a 
recessive bit, resulting in a bit error. Due 
to the fact that the falling edge is detected 
in tq=6, the controller extends TSeg1 and 
shifts the sample point to the right on the 

time axis about the maximum 
synchronization jump width. This shift also 
explains the additional dominant bit after 
the acknowledgement, as the bit timing of 
ECU5 contains an additional phase error 
of approximately one complete bit time. 
This example clearly shows that detailed 
analysis is possible when simulating the 
physical layer of a communication system 
like CAN. Discovering a problem is only 
the first step during the verification of 
these communication architectures. In 

order to solve the problem properly a 
deeper look into the system is required.  

CONCLUSION 

This paper demonstrates simulation of the 
physical layer of a Volkswagen CAN bus 
network using the Saber simulation 
environment. It emphasizes the 
importance of simulation of this type of 
system at an early stage in the design 
process in order to reduce the number of 
prototypes. Simulation allows the analysis 
of different vehicle network architectures 
without having the hardware or the real 
vehicle network. Required changes are 
detected before the network architecture 
will be delivered to manufacturing and the 
simulation covers all tolerance limits and 
random variants. Beside early problem 
detection, a deeper understanding of the 
appropriate architecture is guaranteed and 
it is easier to analyze targeted network 
variants. This makes the network 
developer more flexible and allows faster 
addressing of application-specific 
problems. In addition to the examples 
shown in this article, further applications 
are important candidates for future 
investigation. The analysis of 
heterogeneous network architectures, e.g. 
a combination of high speed CAN and low 
speed CAN is important, in order to 
simulate latencies of message frames. 
The methodologies outlined in this paper 
can be used for other in-vehicle network 
technologies like LIN and FlexRay and will 
offer similar benefits. 
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