
iCC 2005 CAN in Automation

09-13

Design and verification of a CAN controller for custom
ASIC

Namsub Kim (speaker), Dawi Kim, Kyuhyung Cho, Jinsang Kim, and Wonkyung Cho

This paper presents a novel architecture and verification model of the CAN protocol
controller for ASIC implementation. The key features of the proposed CAN controller
are flexibility in terms of interfacing with host processors and smaller chip size. Also,
the architecture is efficient for Intellectual Property (IP) reuse because of its flexibility
and synthesis efficiency. For verification of the designed controller, we developed a
verification model for fast verification during the design phase. The gate counts of the
core logics in the proposed CAN controller are 3189 gates which are much smaller
than other controllers. After successful verification, the CAN controller was fabricated
by using 0.35_CMOS process.

1. Introduction

The Controller Area Network (CAN) is data
communication protocol widely used in
various application areas such as
automobile, medical equipments, and
many industrial applications [9]. Typically,
one CAN system needs many CAN
controllers and the CAN controller is
indispensable for each CAN node, so that
it is desirable to implement CAN controller
as inexpensive as possible. There is an
approach to make a low-cost
communication controller called LIN (LIN:
Local Interconnect Network) in conjunction
with CAN. LIN operates at data rates up to
20 Kbit/s and is based on a common
UART/SCI interface hardware [11]. The
method for making low cost silicon in LIN
is mainly focused on using simplified
protocol and low cost physical layer
device. Therefore, its usage is restricted
only to low cost communication system
and it could not be replaced to all CAN
controllers.

There have been many CAN controllers
widely used in commercial market and
some of them are provided as an IP. From
the viewpoint of IP, it is important for the
design to be reusable, flexible, reliable,
and easy to implement [13]. Since the
design methodology and implementation
of the CAN controller have been mainly
depended on the designer’s experience, it
is required to make efficient architecture
which satisfies the aforementioned
features.

Moreover, since the upper service
boundary of CAN implementation is not
standardized, the development of efficient
verification method is required [8].

In this paper we propose a CAN controller
which makes low cost silicon and efficient
for IP reuse. Also, efficient verification
process of the CAN controller for rapid
prototyping is presented.

This paper is organized as follows:

Section 2 describes the proposed CAN
controller architecture and its operation.
Section 3 describes the verification
method of the CAN controller. Section 4
describes ASIC implementation details
and comparisons with previous CAN
controllers. Finally, concluding remarks
and future work are given in section 5.

2. Proposed CAN Controller Architecture

CAN controller can be classified by its
mailbox structure [9]. Looking at the
mailbox structure, basically there are two
forms of structure type that are called
BasicCAN and FullCAN. BasicCAN can be
implemented with smaller size than
FullCAN. However, the main disadvantage
of BasicCAN is that it might give a host
processor large load when the controller
needs to gather large amount of data.
FIFO Buffer CAN controller such as Philips
SJA1000 could solve the problem of
BasicCAN structure, but the chip size was
large because of large amount of FIFO
[10]. There had been an approach to use
external memory which is operating similar

iCC 2005 CAN in Automation

09-14

to FIFO [2]. This CAN controller could
reduce the size of CAN core, but it has an
additional burden of implementation of
external memory and is not good for using
as an IP.

Typically, the CAN protocol controller can
be implemented as shown in Figure 1 [12].

Bit
Timing
Logic

Bit
Stream

Processor

Shift -Register

Baudrate
Prescaler

Control

Status

Send

Receive

Host
Processor

RX

TX

Bit
Timing
Logic

Bit
Stream

Processor

Shift -Register

Baudrate
Prescaler

Control

Status

Send

Receive

Host
Processor

RX

TX

Figure 1. Basic architecture of CAN
protocol controller

This architecture describes well the data
flow of signals and components needed
for implementation. However, because Bit
Timing Logic and Bit Stream Processor
are heavily related, it is very hard to debug
the hardware during the design phase.
Moreover, because the error handling and
control mechanism in CAN protocol is very
complex, the complexity of Bit Stream
Processor is very high. Therefore, the
implementation depends heavily on the
designer’s technique and the design is not
suitable for IP reuse. Moreover, in order
for the design to change the interface with
host processor, the whole design must be
re-designed.

For solving the foregoing problems, we
separated bit timing operation as
independent block. The role of Bit Stream
Processor is divided into Field Manager,
Error Checking, and Data Generation
blocks according to the specification of
CAN protocol. Because error management
scheme in CAN protocol is complex, we
separated each error management blocks
and it could lead our architecture to be
compact in size. Also, we used FIFO that
can be variable in size in order to prevent
problem known as “inner priority inversion”
[6]. The proposed architecture is shown in
Figure 2.

This architecture is a BasicCAN with FIFO
buffer, someone called it as intermediate
CAN controller, which is compatible to

CAN version 2.0A. The functional
description of each block is as follows

Figure 2. Proposed architecture

� Synchronizer synchronizes RX
data with bit timing.

� ID Checker checks incoming ID
and determines valid frame.

� Register Group stores bit timing
parameters and host parameters.

� Interface Logic controls between
host and CAN core.

� RX FIFO stores valid incoming
data.

� Field Manager controls errors.

� Error Checkers consist of checking
blocks for each type of errors
specified in ISO 11898-1 and
informs errors to Error Counter.

� Error Counter counts errors

� Data & Remote Frame Generator
generates frame.

� Error & Overload Frame Generator
generates frame whenever error or
overload condition occurs.

� Serializer serializes parallel data.

In this architecture, ID Checker is
operating similar to acceptance filter of
previous designs. Error checking blocks
are separated. These separated blocks
make the architecture easy to modify and
test.

Our architecture can be easily upgraded to
CAN version 2.0B and interface logic can
be realized with simple structure as shown
in Figure 3. Figure 3 shows synthesis
result of Interface Logic targeting to 8051
microcontroller. It can be adapted to any
systems with small modifications of
Interface Logic and FIFO size.

Field Manager

CRC
Error

Checker

Form
Error

Checker

Bit
Error

Checker

Stuff
Checker Synchronizer

Error Counter

Error & Overload
Frame Generator

Data & Remote

Serializer

Stuff

Receive
Buffer

Receive
FIFO

ID Checker

CRC
Calculator

Interface
Logic

Transmit
Buffer

Register
Group

ACK
Error

Checker

TX

RX

Host
Processor

iCC 2005 CAN in Automation

09-15

Figure 3. Synthesis result of Interface
Logic

3. Verification Methodology

Verification is an important topic in
designing VLSI circuits. There has been a
previous paper work for verifying CAN
protocol by using a verification system
called Murϕ [6]. The paper uses

verification structure composed of one
transmitter and many receivers, where the
receiver can be varied according to the
parameter N. Since Murϕ uses Murϕ
compiler and Murϕ description language,

it needs additional work during Hardware
Description Language (HDL) simulation.

The proposed method we used consists of
three steps. In the first step, we developed
a simulation model for verifying the CAN
controller as shown in Figure 4.

Node A Node B Node C

Tx Rx

Virtual Host
Model

CAN
Controller

Tx Rx

CAN
Controller

Tx Rx

CAN
Controller

Bus Model

Design
Under
Test

Virtual
CAN

Controller

Tx Rx

Virtual Host
Model

Virtual Host
Model

 Figure 4. Verification Model

The Virtual Host Model is operating
independently and handles transmission of
data or remote frames. It also checks
whether host interfacing is working
correctly. The Virtual CAN Controller
transmits error frames which can not be

generated by the Design Under Test
(DUT). Bus Model can force the CAN bus
to be erroneous and monitor the
verification results. In this simulation
model, each CAN controller sends or
receives messages. This means any of
CAN controller can be a master. Also, this
simulation model can not only test the
controller’s behavior but also check the
interface to the host processor

Since the verification model shown in the
Figure 4 was written in verilog HDL, we
could test our CAN controller during any
time of the design phase. As a result, the
prototyping time has been greatly reduced.
Figure 5 shows simulation example using
the verification model.

Figure 5. Example of simulation

The second step of our verification is the
ISO conformance test specified in ISO
16845. Conformance test is necessary for
testing interoperability between different
implementations. In this test, we used the
architecture of test plan (TP) described in
ISO 16845 and tested our design step by
step according to ISO 16845 document.

ISO 16845 is not perfect as mentioned in
the previous paper [6]. Therefore, as a
third step of our verification, we made a
FPGA verification system to check the
design feasibility for real time application
as shown in Figure 6.

For the prototyping of the design, Altera’s
Excalibur Development Board was used.
We made two other test boards that can
send temperature and motor speed data.
8051 microcontrollers were used as host
processors. Temperature and motor speed
data generation boards are designed by
using commercial CAN controller.

iCC 2005 CAN in Automation

09-16

TemperatureMotor Speed

CAN BUSCAN BUS

FPGA
Prototype

FPGA
Prototype SJA1000SJA1000 SJA1000SJA1000

8051
?-controller

8051
?-controller

8051
?-controller

8051
?-controller

FPGA
Prototype

FPGA
PrototypeSJA1000SJA1000 SJA1000SJA1000

FPGA
Prototype

FPGA
PrototypeSJA1000SJA1000SJA1000SJA1000

PCA82C250PCA82C250 PCA82C250PCA82C250 PCA82C250PCA82C250

8051
?-controller

8051
?-controller

TemperatureMotor Speed

CAN BUSCAN BUS

FPGA
Prototype

FPGA
Prototype SJA1000SJA1000 SJA1000SJA1000

8051
?-controller

8051
?-controller

8051
?-controller

8051
?-controller

FPGA
Prototype

FPGA
PrototypeSJA1000SJA1000 SJA1000SJA1000

FPGA
Prototype

FPGA
PrototypeSJA1000SJA1000SJA1000SJA1000

PCA82C250PCA82C250 PCA82C250PCA82C250 PCA82C250PCA82C250

8051
?-controller

8051
?-controller

Figure 6. FPGA Verification System

The FPGA Verification System can
change the CAN protocol controller from
our design to commercial product.
Therefore, we could test interoperability
between our design and existing CAN
controllers in board level. The host
computer monitors and controls data
communications on the CAN BUS using
RS-232 serial port. The clock frequency
used in this system was 24MHz and the
CAN transmission rate was 1Mbit/s.

4. ASIC Implementation and Comparisons

The overall ASIC implementation flow of
the designed CAN controller is depicted in
Figure 7.

Figure 7. Implementation flow

Implementation process consists of front-
end design and back-end design. In the
front-end design phase, proposed
architecture was modeled using verilog

HDL and simulated the CAN functions with
our verification model.

In the back-end design phase, synthesized
gate level netlist was translated into silicon
layout after placement and routing
process. Because of parasitic capacitance
and resistance of interconnection of each
gate, we extracted Standard Delay Format
(SDF) file and simulated once again with
this SDF information. After overall
verification had been completed, we
generated the final layout as shown in
Figure 8 and the layout was fabricated by
using Hynix 0.35 _ CMOS process.

Figure 8. Layout of the designed chip

For the comparison of our design result
with various other designs, we
investigated previous papers which are
similar to our work [1, 2, 4]. For fair
comparison, only the core gate counts are
compared as shown in Table 1.

Table 1. Comparison of gate counts

Gate count of each block as shown in
Table 2 has been obtained using
Synopsys Design Compiler and Hynix
library. Because we used timing

iCC 2005 CAN in Automation

09-17

optimization options, the result of
synthesis contains additional buffers and
interconnection area. As shown in Table 2,
each block of the proposed CAN controller
could be implemented below 1000 gates,
which means the design is efficient on
synthesis and easy to modify. Because the
memory implementation is not relevant to
synthesis, we excluded memory
comparisons on both sides.

Table 2. Block synthesis comparison
Function Blocks
of the Proposed
CAN Controller

#gates Functional
Blocks of the
paper [2]

#gates

Interface Logic 100

ID Checker 62

Field Manager 627

bit timing 302

Synchronizer 594

Serializer 176

bit stuffing 212

Data & Remote
Frame Gen.

364

Error & Overload
Frame Gen.

207

message proc. 3368

CRC Calculator

(Including CRC
Error Checker)

325 transmission 1098

Error Counter 552

Stuff Checker &
Stuff Generator

132

error
management

1186

Error Checkers
(Ack, Bit, Form)

50 CRC 674

TOTAL 3189 TOTAL 6840

5. Conclusions

In this paper, we designed a stand-alone
CAN controller which is compatible to CAN
Version 2.0A. The gate counts of core
logic of the designed CAN controller was
3189 gates which is much smaller than
other CAN controllers. Also, the
implemented CAN controller can be easily
upgraded to Version 2.0B and has the
flexible interface logic in order to make it
possible for interfacing with various host
controllers. Because the proposed
controller is flexible and easy to modify, it
is suitable for IP. Furthermore, we tested
the CAN controller with various methods
and the results were successful. The
proposed architecture was fabricated by
using 0.35 _Hynix CMOS process and
packaged with 100 Pin MQFP. The result
chip has 38.3712mW dynamic power and
maximum 25MHz operating frequency.

Since the need for System On a Chip
(SoC) has been increased, the proposed
CAN controller can be embedded into a
SoC. Therefore, a further study and
technology development is necessary in
order to harness the potential of CAN
protocol.

Acknowledgement

This work was supported by Kyunghee-
Davan ASIC Center at Kyung Hee
University.

References

[1] Kirschbaum A., Renner F. M., Wilmes
A., Glesner M., “Rapid-Prototyping of a
CAN-Bus Controller: A Case Study,”
Rapid System Prototyping, 1996.
Proceed ings . , Seventh IEEE
International Workshop on, 19-21 June
1996

[2] J. de Lucas, M. Quintana, T. Riesgo, Y.
Torroja, J. Uceda, “Design of a CAN
interface for custom circuits,” Industrial
Electronics Society, 1999. IECON ’99
Proceedings. The 25t h Annual
Conference of the IEEE, Volume:2, 29
Nov.-3 Dec.1999 Pages:662-667 vol.2

[3] Guerrero C., Rodriguez-Navas G.
Proenza J., “Design and implementation
of a redundancy manager for triple
redundant CAN controllers,” IECON 02
[Industrial Electronics Society, IEEE
2002 28th Annual Conference of the],
Volume:3, 5-8 Nov. 2002, Pages:2294-
2299 vol.3

[4] Donchev B. , Hr is tov M. ,
”Implementation of CAN controller with
FPGA structures,” CAD Systems in
Microelectronics, 2003. CADSM 2003.
Proceedings of the 7th International
Conference. The Experience of
Designing and Application of, 18-22
Feb. 2003, Pages:577-580

[5] Winter A., Bittruf D., Tanurhan Y.,
Muller-Glaser K. D., “Rapid prototyping
of a communication controller for the
CAN bus,” Rapid System Prototyping,
1996. Proceedings., Seventh IEEE
International Workshop on, 19-21 June
1996 Pages:152-157

iCC 2005 CAN in Automation

09-18

[6] Van Osch M., Smolka S. A., “Finite-
State Analysis of the CAN Bus
Protocol”, High Assurance Systems
Engineering, 2001. Sixth IEEE
International Symposium on, 22-24 Oct.
2001 Pages:42-52

[7] ISO 11898-1, “Road vehicles –
Controller area network (CAN), Part1:
Data link layer and physical signaling”,
International Standard ISO 11898-1,
2003

[8] ISO 16845, “Road vehicles – Controller
area network (CAN) – Conformance
test plan, International Standard ISO
16845, 2004

[9] Wolfhard Lawrenz, “CAN System
Engineering From Theory to Practical
Applications”, Springer, 1997

[10] Philips Semiconductors, “SJA1000
Stand-alone CAN controller DATA
SHEET”, 2000

[11] Local Interconnect Network (LIN),
http://www.can.bosch.com/LIN/LIN.html

[12] Florian Hartwich, Armin Bassemir,
“The Configuration of the CAN Bit
Timing”, 6t h In ternat iona l CAN
Conference, iCC, November 1999.

[13] Hoi Jun Yoo, “IP Authoring and SoC
Design Methodology”, Technical
Document at SIPAC, May 2003

About the author:

Namsub Kim received B.S and M.S
degree in electronic engineering from the
University of Kyung Hee, Korea, in 1990
and 1992. From 1994 to 1996, he was a
professor in engineering department at
Korea Naval Academy. From 1996 to
1998, he worked at Hynix Semiconductor
Corporation. He is at present a senior
researcher at Davan-Kyunghee ASIC
Center, and part-time instructor in
electronic engineering at the University of
Kyung Hee.

Namsub Kim
Davan-ASIC Center at Kyung Hee Univ.
Giheung, Yongin, Gyeonggi, South Korea
Tel. +82-19-640-8698
Fax +82-31-202-4941
kns@vlsi.kyunghee.ac.kr
http://asic.kyunghee.ac.kr

Dawi Kim

Kyung Hee University
Giheung, Yongin, Gyeonggi, South Korea
Tel. +82-31-201-2196
Fax +82-31-202-4941
kiwi@vlsi.kyunghee.ac.kr
http://asic.kyunghee.ac.kr

Kyuhyung Cho
Kyung Hee University
Giheung, Yongin, Gyeonggi, South Korea
Tel. +82-31-201-2196
Fax +82-31-202-4941
Jo90e@vlsi.kyunghee.ac.kr
http://asic.kyunghee.ac.kr

Jinsang Kim
Kyung Hee University
Giheung, Yongin, Gyeonggi, South Korea
Tel. +82-31-201-2996
Fax +82-31-202-4941
Jskim27@khu.ac.kr
http://csvlsi.kyunghee.ac.kr

Wonkyung Cho
Davan-ASIC Center at Kyung Hee Univ.
Giheung, Yongin, Gyeonggi, South Korea
Tel. +82-31-201-2195
Fax +82-31-202-4941
chowk@khu.ac.kr
http://csvlsi.kyunghee.ac.kr

