
iCC 2005 CAN in Automation

10-1

The impact of bit stuffing on the real-time performance of
a distributed control system

Mouaaz Nahas, Michael Short and Michael J. Pont,
Embedded Systems Laboratory, University of Leicester

The bit-stuffing mechanism utilised by CAN causes the message transmission time to
become (in part) a complex function of the contents of the data fields. This variation
in transmission times makes it difficult to predict the precise behaviour of real-time
systems implemented using CAN. Previous work in our laboratory has led to the
development of a software-based compensation method which significantly reduces
the impact of CAN bit stuffing on message transmission times. In the present paper,
we focus on the impact of bit stuffing on a system implemented using a “Shared-
Clock” scheduling method. We use a detailed Hardware-in-the-Loop (HIL) testbed to
explore the behaviour of an Adaptive Cruise Control (ACC) system for use in a
passenger car. Through the use of the testbed, we present quantitative results which
demonstrate the impact of variations in the message transmission times on the
performance of the ACC system. We go on to demonstrate the improvement in
performance which results when the previously-mentioned compensation technique is
employed. Finally, the memory and CPU resources required to implement this
compensation are discussed.

1. Introduction

Over recent years, we have considered
various ways in which time-triggered
software architectures can be employed in
low-cost embedded systems where
reliability is a key design consideration
(e.g. Pont. 2001; Pont, 2003; Pont and
Banner, 2004). Our previous work in this
area has focused on the development of
both single- and multi-processor designs.
In the case of multi-processor designs, we
have sought to demonstrate that a
“Shared-Clock” (S-C) architecture provides
a simple, flexible platform for many
systems (Pont, 2001). In such designs,
the Controller Area Network (CAN)
protocol - introduced by Robert Bosch
GmbH in the 1980s (Bosch, 1991) -
provides high-reliability communications at
low cost (Farsi and Barbosa, 2000;
Fredriksson, 1994; Thomesse, 1998;
Sevillano et al., 1998). Since the CAN
protocol has become widely used in many
sectors, such as automotive and
automation (Farsi and Barbosa, 2000;
Fredriksson, 1994; Thomesse, 1998;
Sevillano et al., 1998; Pazul, 1999; Zuberi
and Shin, 1995; Misbahuddin and Al-
Ho lou , 2003) , mos t mode rn
microprocessor families now have

members with on-chip support for this
protocol (e.g. Philips, 1996; Siemens,
1997; Infineon, 2000; Philips, 2004).

In a Shared-Clock CAN (SCC) network,
tasks on the slave will suffer from timing
jitter if there is any variation in the time
taken to send “Tick” messages between
the Master and the Slave. One source of
such a variation is the frame length, which
may be indirectly affected by the bit-
stuffing mechanism incorporated in the
CAN hardware (see Section 2).

As a result of previous work in this area,
we have developed a software-based
compensation method, suitable for use
with SCC systems, which significantly
reduces the impact of CAN bit stuffing: this
approach has been shown to be effective
on a variety of hardware platforms (Nahas
and Pont, 2005).

In the study reported in this paper, we
used a detailed Hardware-in-the-Loop
(HIL) testbed to explore the impact of bit
stuffing on the behaviour of an Adaptive
Cruise Control (ACC) system for use in a
passenger car. We also considered the
costs (in terms of memory requirements
and CPU load) of implementing the
compensation scheme in real applications.

iCC 2005 CAN in Automation

10-2

Figure 1: Impact of frame length on the timing of Slave ticks in the SCC system

2. The CAN bit-stuffing mechanism

The CAN protocol uses "Non Return to
Zero” (NRZ) coding for bit representation.
Under such a scheme, drift in the
receiver’s clock can occur when a long
sequence of identical bits has been
transmitted. Such a drift might, in turn,
result in message corruption.

To avoid the possibility of such a scenario,
the CAN communication protocol (at the
physical level) employs a bit-stuffing
mechanism which operates as follows:
after five consecutive identical bits have
been transmitted in a given frame, the
sending node adds an additional bit, of the
opposite polarity. All receiving nodes
remove the ‘inserted’ bits to recover the
original data (Farsi, 2000).

Whilst providing an effective mechanism
for clock synchronization in the CAN
hardware, the bit-stuffing mechanism
causes the frame length to become a
complex function of the data contents.

It is useful to understand the level of
message variation that this process may
induce. When using (for example) 8-byte
data and extended CAN identifiers, the
minimum message length will be 111 bits
(without bit stuffing) and the maximum
message length will be 135 bits (with the
worst-case level of bit stuffing): see Nolte
(2003) for details. At the maximum CAN
baud rate (1 Mbit/sec), this translates to a
possible variation in message lengths of
24 _s.

These variations in message transmission
times can have important implications in
any real-time systems in which it is
important to be able to predict event timing
at the microsecond level. For example, in
systems using a Shared-Clock scheduler
(e.g. Pont. 2001; Pont, 2003; Pont and
Banner, 2004), variations in the duration of
“Tick” messages can have a significant
impact on the levels of task jitter in the
Slave nodes (see Nahas et al., 2004).
This process is illustrated in Figure 1.

3. Software–based compensation

To reduce the impact of bit stuffing in the
CAN protocol on the behaviour of the SCC
scheduler, we have developed a software-
based compensation algorithm (Nahas
and Pont, 2005) in which each frame is
encoded (before transmission) in order to
reduce the impact of the CAN bit-stuffing
mechanism. A decoding process must
also take place in the receiver nodes to
restore the original data.

4. The testbed

As noted in the introduction, the main aim
of this paper was to use a detailed
Hardware-in-the-Loop (HIL) testbed to
explore the impact of bit stuffing on the
behaviour of an Adaptive Cruise Control
(ACC) system for use in a passenger car.

ACC is a relatively new technological
development in the automotive field, and is
said to reduce driver fatigue and the rate

iCC 2005 CAN in Automation

10-3

Figure 2: An overview of the operation of the ACC

of auto accidents, whilst increasing fuel
efficiency (Stanton, 1997). The main
system function of ACC is to control the
speed of the host vehicle using information
about [1] the distance between the subject
vehicle and any forward vehicles; [2] the
motion of the subject vehicle; and
[3] driver commands.

Based upon the information acquired, the
controller sends commands to the vehicle
throttle and brakes to either regulate the
vehicle speed to a given set value, or
maintain a safe distance to a leading
vehicle (if the speed of the vehicle in front
is slower than the set value). It also sends
status information to the driver.

The system under consideration in this
study is a Type 2b ACC system: such a
system has an automatic gearbox and
active braking. Vehicle acceleration is
limited to 2.0 m/s2, deceleration to 3.0 m/s2

in order to comply with ISO standards
(ISO, 2003).

Figure 2 shows the principle of operation.
The controller that has been implemented
is based of a modified version of that
presented by Yi et al (2000) and is shown
in schematic form in Figure 3. The ACC
testbed was based on Infineon C167CS
microcontrollers (one per node) running at
a 20 MHz oscillator frequency. Each
microcontroller had two on-chip CAN
interfaces. In total 10 nodes were used.
All the HIL system testing takes place
using a realistic test facility developed with
the University of Leicester (Short et al.
2004a, b, c).

A schematic of the overall system is
shown in Figure 4. The nodes were
connected using twisted-pair CAN links
running at 500 kbaud.

Figure 3: The ACC implementation:
adapted from Yi et al. (2000)

5. Experimental methodology

The methodology used to assess the
impact o f the sof tware-based
compensation methodology on the ACC
system is discussed in this section.

5.1 Three systems

One consequence of the use of the
software-based compensation scheme is
that a limit is placed on the amount of user
data that may be transferred in each CAN
frame, since the encoding process
requires two data bytes (Nahas and Pont,
2005).

iCC 2005 CAN in Automation

10-4

Figure 4: The multi-node ACC implementation

The original system design had to be
altered to accommodate the reduced data
payload. This, in turn, resulted in a
reduction in the sampling rate of the
system traction controller. To enable a
meaningful comparison, measurements
were also taken for an uncompensated
implementation using this reduced
sampling rate.

To summarise: the three sets of results
were obtained. These are labeled as
follows: “Original” (the original 8-byte
system with no compensat ion);
“Uncompensated” (a 6-byte system with
no compensation); and “Compensated” (a
6-byte system with compensation).

5.2 Jitter measurement

To obtain data regarding real-time stability,
the latency between Master and Slave
clock ticks was recorded for a period of
10,000 samples for each system. To
make these measurements, a pin on the
Master node was set high (for a short
period) at the start of the Master interrupt
service routine (ISR). Another pin on the
Slave (initially high) was set low at the
start of Slave ISR. The signals from these
two pins were then AND-ed (using an
74LS08N chip: Texas Instruments, 2004),
to give a pulse stream. The widths of the
resulting pulses were measured using a
National Instruments data acquisition card
‘NI PCI-6035E’ (National Instruments,
2004), used in conjunction with
appropriate software LabVIEW 7.1

(LabVIEW, 2004). The average jitter was
taken as the standard deviation of the total
latency of the entire sample range. Worst
Case Transmission Time (WCTT) was
represented by the longest delay between
the occurrence of a clock Tick on the
Master node and the corresponding Tick
on the Slaves.

5.3 Jerk and IAE measurement

To provide an indication of the control
performance of each system, the
maximum positive and negative vehicle
‘jerk’ (rate of change of acceleration) was
recorded over a 300 second test period in
which the ACCS was put through a series
of typical manoeuvres. The jerk was
averaged over a 1-second time period in
accordance with ISO test specifications
(ISO, 2003).

In addition to measuring the vehicle ‘jerk’,
the performance of the vehicle while
executing speed, and time-gap control
was recorded. The IAE (Integral of
Absolute Error) criterion was used to
provide the performance measure in this
case, as defined in Equation 1. The IAE
represents the error between the
measured speed (or time-gap) and the
reference, with the test duration, T, equal
to 300 seconds.

dtteIAE
T

∫=
0

)(

Equation 1

iCC 2005 CAN in Automation

10-5

Table 1: Results from the ACC study

Test
Origin

al
Uncompensat

ed
Compensat

ed

IAE Velocity 1.64 1.68 1.53

IAE Distance 11.60 11.84 10.98

Ave. Jitter (µs) 3.66 3.83 2.40

Diff. Jitter (µs) 23.53 24.03 11.20

WCTT (µs) 339.17 339.57 310.77

Max Pos Jerk
(m/s3) 2.24 2.39 2.37

Max Neg Jerk
(m/s3) -1.81 -1.75 -1.60

Each velocity test was for a speed setpoint
of 70 MPH. Each distance test was
performed whilst following a lead vehicle
at 50 MPH (distance setpoint of 33.53 m
for a 1.5 s headway).

6 Results

The results obtained in the studies
detailed in Section 5 are presented in this
section.

6.1 System performance

Each of the tests detailed in Section 5 was
repeated three times, and the results
obtained were averaged (see Table 1).
Please note that the IAE measurements
are “unit less” values, and are best viewed
as a performance measure (the lower the
better).

It can be seen from the results that the
measured WCTT, average jitter and
latency difference have all been reduced
considerably by the compensation
technique. For example, the overall
reduction in the difference jitter was
approximately 50%.

When comparing the control behaviour of
the compensated system to that of the
original system, it can be seen that the
performance has improved in all areas (by
approximately 9%), except in the case of
positive jerk.

When comparing the uncompensated
system to the original system, it is clear
that the control performance of the

uncompensated system is comparatively
poor: this is a direct consequence of the
25% reduction in the data bandwidth of the
network. However, when the
compensated and uncompensated
systems (with the same bandwidth
restrictions) are compared, the use of
compensation is seen to improve
performance in all areas (including positive
jerk).

6.2 Memory and CPU requirements

The compensation operation took an
average of 0.7 ms on the processors used,
and the corresponding decoding operation
had an average duration of 0.6 ms.

The extra RAM required by the
compensation technique was 72 bytes and
56 bytes for the Master and Slave,
respectively. The corresponding ROM
(program memory) increases were found
to be 1,317 and 985 bytes respectively, for
the Master and Slave.

Please note that the C167 boards used in
this study have 256 kBytes ROM and
256 kBytes RAM (PhyCORE, 2003). The
overall increases in memory do not,
therefore, represent large percentages of
the available resources.

7. Discussion and conclusions

From the results presented, it can be seen
that applying the software-based
compensation technique produces
measurable decreases in the variation of
the transmission time of CAN messages.

iCC 2005 CAN in Automation

10-6

These measurable improvements may
have an impact on a particular
implementation, such as the control
system outlined here, where excessive
jitter can cause reductions in performance.

Inevitably, due to the required message
coding and decoding, the system places
an extra computation and memory load on
each microcontroller. In addition, by
reserving two data bytes for the
compensation information, the overall
information throughput of the network is
reduced. These factors must be taken into
account when deciding whether to
implement such a compensation
technique.

Acknowledgements

The project described in this paper was
supported in part by the Leverhulme Trust
(F / 00212 / D), and in part by the UK
Government (EPSRC-DTA award). Work
on this paper was completed while MJP
was on Study Leave from the University of
Leicester.

References

Bosch (1991), Robert Bosch GmbH “CAN
Specification Version 2.0”.

Farsi, M. and Barbosa, M. (2000)
“CANopen Implementation, applications
to industrial networks”, Research
Studies Press Ltd, England.

Fredriksson, L.B. (1994) “Controller Area
Networks and the protocol CAN for
machine control systems”, Mechatronics
Vol.4 No.2, pp. 159-192.

Infineon (2000) “C167CR Derivatives 16-
Bit Single-Chip Microcontroller”, Infineon
Technologies.

ISO 15622 (2003) “Adaptive Cruise
Control Systems – Performance
Requirements And Test Procedures”,
International Standards Organisation,
Geneva, Switzerland.

LabVIEW 7.1: WWW webpage
http://www.ni.com/labview/upgrade.htm
[accessed Dec 2004]

Misbahuddin, S.; Al-Holou, N. (2003)
“Efficient data communication
techniques for controller area network
(CAN) protocol”, Computer Systems and

Applications, 2003. Book of Abstracts.
ACS/IEEE International Conference
on, Pages:22.

Nahas, M. and Pont, M. (2005) [submitted]

Nahas, M., Pont, M.J. and Jain, A. (2004)
"Reducing task jitter in shared-clock
embedded systems using CAN". In:
Koelmans, A., Bystrov, A. and Pont, M.J.
(Eds.) Proceedings of the UK Embedded
Forum 2004 (Birmingham, UK, October
2004), pp.184-194. Published by
University of Newcastle upon Tyne
[ISBN: 0-7017-0180-3].

National Instruments; PCI-6035E data
sheet and specs; WWW webpage:
http://www.ni.com/pdf/products/us/4daqs
c202-204_ETCx2_212_213.pdf
[accessed May 2004]

Nolte, T. (2003) “Reducing Pessimism and
Increasing Flexibility in the Controller
Area Network”, PhD thesis, Malardalen
University.

Pazul, K. (1999) “Controller Area Network
(CAN) Basics”, Microchip Technology
Inc. Preliminary DS00713A-page 1
AN713.

Philips (1996) “P8x592 8-bit
microcontroller with on-chip CAN,
datasheet”, Philips Semiconductor.

Philips (2004) “LPC2119/ 2129/ 2194/
2292/ 2294 microcontrollers user
manual”, Philips Semiconductor.

PhyCORE-167 (2003) “QuickStart
Instructions”, Phytec Technology.

Pont, M.J. (2001) “Patterns for time-
triggered embedded systems: Building
reliable applications with the 8051 family
of microcontrollers”, ACM Press /
Addison-Wesley. ISBN: 0-201-331381.

Pont, M.J. (2003) “Supporting the
development of time-triggered co-
operatively scheduled (TTCS)
embedded software using design
patterns”, Informatica, 27: 81-88.

Pont, M.J. and Banner, M.P. (2004)
“Designing embedded systems using
patterns: A case study”, Journal of
Systems and Software, 71(3): 201-213.

Sevillano J L, Pascual A, Jiménez G and
Civit-Balcells A (1998) “Analysis of
channel utilization for controller area

iCC 2005 CAN in Automation

10-7

networks” Computer Communications,
Volume 21, Issue 16, Pages 1446-1451

Short, M., Pont, M.J., and Huang, Q.
(2004a) “Simulation Of Vehicle
Longitudinal Dynamics”, Technical
report ESL 04/01, Embedded Systems
Laboratory, University of Leicester.

Short, M., Pont, M.J., and Huang, Q.
(2004b) “Simulation Of Motorway
Traffic Flows”, Technical report ESL
04/02, Embedded Systems Laboratory,
University of Leicester.

Short, M., Pont, M.J., and Huang, Q.
(2004c) “Development Of A Hardware-
In-The-Loop Test Facility For Distributed
Embedded Systems”, Technical report
ESL 04/03, Embedded Systems
Laboratory, University of Leicester.

Siemens (1997) “C515C 8-bit CMOS
microcontroller, user’s manual”,
Siemens.

Stanton, N. A., Young, M. S. & McCaulder,
B. (1997) "Drive-by-wire: The case of
driver workload and reclaiming control
with adaptive cruise control", Safety
Science, Vol. 27, pp. 149-159.

Texas Instruments: 74LS08 Datasheet,
WWW webpage:
http://www.cs.amherst.edu/~sfkaplan/co
urses/spring-2002/cs14/74LS08-
datasheet.pdf [accessed May 2004]

Thomesse, J. P. (1998) “A review of the
fieldbuses” Annual Reviews in Control,
Volume 22, Pages 35-45

Yi, K., Cho, Y., Lee, S., Lee, J. and Ryoo,
N. (2000) “A Throttle/Brake Control Law
for Vehicle Intelligent Cruise Control”,
Seoul 2000 FISITA World Automotive
Congress, June 12-15, Seoul, Korea.

Zuberi, K. M. and Shin, K. G. (1995) "Non-
Preemptive Scheduling of Messages on
Controller Area Network for Real-Time
Control Applications", in Proc. Real-Time
Technology and Applications
Symposium, pp. 240-249.

Mouaaz Nahas
Embedded Systems Laboratory,
University of Leicester,
University Road,
Leicester LE1 7RH,
UK.
Phone: ++44 (0) 116 252 2578
Fax: ++44 (0) 116 252 2619
mn59@le.ac.uk

Dr Michael Short
Embedded Systems Laboratory,
University of Leicester,
University Road,
Leicester LE1 7RH,
UK.
Phone: ++44 (0) 116 252 2578
Fax: ++44 (0) 116 252 2619
mjs61@le.ac.uk

Dr Michael J. Pont
Embedded Systems Laboratory,
University of Leicester,
University Road,
Leicester LE1 7RH,
UK.
Phone: ++44 (0) 116 252 5052
Fax: ++44 (0) 116 252 2619
M.Pont@le.ac.uk
http://www.le.ac.uk/engineering/mjp9/

