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The CLAN intellectual property core is a CAN 2.0B controller developed at the
Electronics and Telecommunications Department of the University of Aveiro, for
research and educational purposes and in particular with the aim of providing the
adequate hardware support to implement and validate higher layer protocols such as
TTCAN or FTT-CAN. It was modeled at RTL level using the VHDL hardware description
language, synthesized, implemented and tested on Xilinx FPGAs. However, the model
is technology independent and can be synthesized for different implementation
technologies from FPGAs to ASICs. The CLAN IP core fully implements the CAN 2.0B
specification and it includes also a synchronous parallel microprocessor interface,
interrupt generation logic and some advanced features, such as message filtering,
single shot transmission and extended error logs and statistics. The data bus width
can be 8, 16 or 32 bits wide. For applications where microprocessor interface is not
needed or a different interface is required, the core internal module that implements
the protocol can be used separately. The CLAN controller with microprocessor
interface logic occupies about 30% of a Xilinx Spartan-IIE XC2S300E FPGA,
corresponding to 100,000 equivalent logic gates, approximately. It was tested with
other commercial controllers within a bus operating at 1Mbit/seg.

Introduction

Defined in the late 80's, CAN (Controller
Area Network) [1] found wide-spread
acceptance in embedded distributed
control systems, from automotive to
industrial applications. In spite of its
popularity, the application of CAN in safety-
critical systems is, nevertheless, impaired
by the event-triggered characteristics of the
original definition. In CAN, a node can send
a message at any time, provided there is
silence on the bus (CSMA); the MAC
mechanisms will handle the resulting
collisions. As a consequence, a node
sending a message has no guarantee in
what concerns the delivery time of that
message; depending on the message
priority, it may loose contention for several
consecutive times, thus postponing the
effective sending of the message.

For critical applications, time-triggered
systems are preferred, due to their
scalability, composability and dependability
properties [2]. The last few years saw the
outcome of some proposals to improve the
time characteristics of CAN (e.g., TTCAN
[3], FTT-CAN [4]). These take advantage of

the fact that Bosch's and ISO specifications
define only layers 2 and (partially) 1 of the
ISO OSI model. With major or minor
changes on the original definition, these
new proposals impose some determinism
in the message exchange behavior, namely
by allowing a node to send its message at
well defined instants in time. This is
achieved by properly defining mechanisms
in the layers above the original definition.

TTCAN (Time-Triggered Communication
on CAN) started in ICC'98, the International
CAN Conference, where an expert group,
including CiA (CAN in Automation), chip
providers, users and academia, joined the
ISO TC22/SC3/WG1/TF6. The result was
ISO 11898-4, part 4 of the ISO 11898
standard, that specifies time triggered
communication on CAN [5].

FTT-CAN has been proposed at the
University of Aveiro as a mean to merge
flexibility and timeliness in CAN systems.
The aim is to achieve a communication
paradigm that allows systems to be both
timely, delivering the messages under the
specified time constraints, and flexible, by
not requiring the message set to be
statically defined during system operation.
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Motivation and Objectives

Both proposals for time triggered operation
of CAN are built on top of the existing
protocol with little or no modifications (the
aim of FTT-CAN is also to provide timely
behavior with standard CAN controllers).
The development of a new communication
protocol requires its validation.

Although simulation and formal validation
play an important role here, they are not,
on their own, sufficient. The last step in
validation is always field tests, and these
have to be performed with hardware
devices. These tests should also involve
the verification that the adopted solution is
better than the alternatives. Ideally, we
should have a flexible communication
controller that can be programmed to follow
some specification and that can be
modified. Another issue to test is the
robustness of the new protocols, mainly in
what concerns fault tolerance. To do this,
faults have to be introduced in the system
in a controlled and predictable way. Again,
we meet the need for a controller that we
can modify to our desire. In fact, these
requirements cannot be easily fulfilled with
the CAN products commercially available
[6], thus a CAN controller was developed
based on the CANSim simulator [7]. The
initial requirements were the following:

� Complete CAN 2.0B implementation;

�  Internal status fully visible to effectively
support the implementation of higher
layer protocols;

�  Enhanced logging capabi l i t ies
(individual error counters) and extended
statistics (message counters);

� Message filtering capabilities;

�  Flexible interface - parallel/serial,
(a)synchronous, (de)multiplexed buses.

Architecture

The developed CAN controller fully
implements the CAN 2.0B specification.
The developed IP block was split in two
modules, to separate the logic that
implements the protocol from the interface:

�  The CLAN Core module which
implements the CAN 2.0B protocol;

�  The CLAN Controller module which
provides a synchronous parallel
interface with demultiplexed buses.

CLAN Core Module

The CLAN Core module contains all the
circuits required to implement the MAC and
the LLC layers of the CAN 2.0B
specification. It can be used separately
directly connecting to sensors/actuators in
a CAN node without a microprocessor or it
CAN be used as a building block to create
a controller with a customized interface.

Interface Ports

The external interface of the CLAN Core
module is shown on Figure 1. The ports are
divided into the following functional groups:
Synchronization and Initialization (Table 1),
Timing Configuration (Table 2), M o d e
Setup (Table 3), General Status and
Statistics (Table 4), Transmission and
Reception Data (Table 5), Transmission
and Reception Configuration (Table 6),
Error and Fault Confinement (Table 7),
Message Filtering Setup (Table 8) and Bus
Interface (Table 9). A short description of
each port is given into the tables below.
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Figure 1 - CLAN Core module interface.
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The sampleRxBit port (Table 1) provides a
clock synchronous with the Sample Point. It
is useful for TTCAN implementation.

Name Type Description

reset In Asynchronous reset input

clk In Main synchronization signal

clkEnable In Enable input for the "clk" signal

sampleRxBit Out Sample point synchronous clock

Table 1 - Synchronization and Initialization
ports.

Name Type Description

timeSeg1 In
“Length – 1” of Time Segment 1
measured in time quanta

timeSeg2 In
“Length – 1” of Time Segment 2
measured in time quanta

syncJumpWidth In Synchronization Jump Width value

baudRPScaler In Baud Rate Pre-Scaler value

Table 2 - Timing Configuration ports.

Name Type Description

singleShotTx In
When active disables automatic
message retransmission in case of
error

multiSample In
Sampling mode for improved noise
imunity

monitorMode In
When active sets the output driver
permanently to "recessive" level

Table 3 - Mode Setup ports.

Name Type Description

rxtxMode Out
Current RX/TX mode (None, Rx,
Tx, Arbitration)

busFrameState Out
Current state of the frame present
on the bus

arbitrationLost Out
Activated during one CAN bit time
in case of arbitration lost

arbitLostBitIdx Out
When "arbitrationLost" = 1 this
output indicates the bit where
arbitration was lost

txMsgCount Out
Number of successfully transmitted
messages

rxMsgCount Out
Number of successfully received
messages

clrMsgCounters In
When activated clears the
"txMsgCount" and "rxMsgCount"
counters

busActivityFlag Out
Indicates the presence of bus
activity

Table 4 - General Status and Statistics ports.

Name Type Description

txMsgIdExt In Tx message extended identifier flag

txMsgId In Tx message identifier

txMsgRTR In Tx message RTR flag

txMsgDLC In Tx message DLC value

txMsgData In Tx message Data bytes

rxMsgIdExt Out Rx message extended identifier flag

rxMsgId Out Rx message identifier

rxMsgRTR Out Rx message RTR flag

rxMsgDLC Out Rx message DLC value

rxMsgData Out Rx message Data bytes

Table 5 - Transmission and Reception Data
ports.

Name Type Description

reqMsgTx In

When activated, requests the
transmission of the message
applied to the txMsg(IdExt / Id /
RTR / DLC / Data) ports

cancelTxReq In
When activated, cancels the
previous transmission request, if
still pending

msgTxStarted Out
Activated during one CAN bit time
at the start of a message
transmission

msgTxOk Out
Activated during one CAN bit time
at the end of a successful message
transmission

msgTxFailed Out
Activated when a message
transmission fails

rxMsgReady Out
Activated during one CAN bit time
at the end of a successful message
reception

releaseRxBuffer In

When activated, releases the Rx
buffer, allowing the core to write a
new received message on the
buffer accessible trough the
rxMsg(IdExt / Id / RTR / DLC / Data)
ports

dataOverrunError Out

Activated when a new message
was received before an external
release of the Rx buffer containing
the previous received message.
The newly message received is
discarded

Table 6 - Transmission and Reception
Configuration ports.

Name Type Description

configError Out
Activated when the t iming
parameters are invalid

faultConfinState Out
Current fault confinement state
("Error Active", "Error Passive",
"Bus Off")

faultConfStEvent Out
Activated during one CAN bit time
after a change on the fault
confinement state

bitErrorFlag Out
Active during one CAN bit time in
case of a bit error

stuffErrorFlag Out
Active during one CAN bit time in
case of a stuff error

crcErrorFlag Out
Active during one CAN bit time in
case of a CRC error

formErrorFlag Out
Active during one CAN bit time in
case of a form error

ackErrorFlag Out
Active during one CAN bit time in
case of a acknowledge error

errorDetected Out
Active during one CAN bit time in
case of a bit, stuff, CRC, form or
acknowledge error

txErrorCount Out
Tx Error Count as defined on the
CAN specification

rxErrorCount Out
Rx Error Count as defined on the
CAN specification

errorWarnLimit In
Threshold value used to flag a
disturbed bus

errorWarnFlag Out
Activated when one of the error
counters is greater than the
"errorWarnLimit" value

bitErrorCount Out Number of bit errors occurred

stuffErrorCount Out Number of stuff errors occurred

crcErrorCount Out Number of CRC errors occurred

formErrorCount Out Number of form errors occurred

ackErrorCount Out
Number of acknowledge errors
occurred

Table 7 - Error and Fault Confinement ports.
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Name Type Description

rangeFiltering In

When activated, fi l tering is
performed based on the lower and
upper bound of message identifiers
specified by the next two ports;
when deactivated, filtering is based
on identifier patterns

accMskLoBound In
Specifies the identifier lower bound
or don’t care bits of the identifier
used in message filtering

accIdUpBound In
Specifies the identifier upper bound
or significant bits of the identifier
used in message filtering

Table 8 - Message Filtering Setup ports.

Name Type Description

busBit In
Current bus level detected by the
input transceiver

rxBit Out
Bus level at the previous sample
point

txBit Out
Current level applied to the output
transceiver

Table 9 - Bus Interface ports.

Internal Structure

The internal structure of the CLAN Core
module is shown on Figure 2. A short
description of each block is given into the
following subsections.

Bit Stuffing Unit

The Bit Stuffing Unit is used to:

�  insert stuff bits on the transmitted bit
stream;

�  check/remove stuff bits from the
received bit stream.

It is shared by the transmission and
reception parts of the core, because unless
an error has occurred or the transmitter
looses arbitration, within the stuffed fields
the transmitted and the received bits
should match.

CRC Unit

The CRC Unit calculates and checks the
CRC sequence included in the frame.
Similarly to the Bit Stuffing Unit, it is shared
among the transmission and reception
parts of the controller. In transmit mode, it
calculates the CRC sequence during the
Start of Frame, Arbitration, Control and
Data  fields. During the CRC Sequence
field, the calculated sequence is shifted into
the bus. In reception mode it compares the
received sequence with the locally
computed sequence in order to detect
errors on the received bit stream.

Reception Unit

The Reception Unit latches the bus bit at
the Sample Point and acknowledges a
frame during the Acknowledge Slot field.

Transmission Unit

The Transmission Unit determines the bit
to be transmitted by the node and sets it at
the beginning of the bit time. The sources
for the transmitted bit are the following:

�  A message bit from the ID, RTR, DLC
or DATA fields;

� A stuff bit;

� A CRC bit;

� A fixed polarity bit - recessive/dominant;

�  An acknowledge bit generated by the
Reception Unit;

�  An error frame bit produced by the
Error Handler.

Frame Sequencer

The Frame Sequencer plays a
central role within the controller,
performing the following tasks:

� Arbitration;

�  Accepting requests to transmit
messages;

�  Detecting a start of frame in the
bus;

�  Sequencing fields in Data and
Remote Transmission Request
frames;

�  Signal ing the successful
transmission of a message and
the end of a message reception;

� Responding to overload frames.

CLAN
Core

Clock
Unit

Synchronization Unit

Control
Unit

Message Buffers

Error
Handler

Tx
Unit

Frame
Sequencer

Rx
Unit

CRC
Unit

Bit
Stuff
Unit

Higher Layer / Application Interface

Physical Interface / Line Driver

Figure 2 - CLAN Core internal block diagram.
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Figure 3 shows a partial behavioral
specification of the Frame Sequencer. It
consists of two parallel state machines: the
Rx/Tx Mode State Machine and the Frame
State Machine. The former defines the
operating mode of the controller. The last
establishes the sequence of fields for all
frame types except error frames, which are
generated directly by the Error Handler.

INTERMISSION

ARBITRATION TXRX

NONE

Frame Sequencer Rx/Tx Mode

Frame State

IDLE and
msgTxReq

IDLE and
rxBit=dominant

EOF EOF

arbitrationLost arbitrationWin

IDLE ...

Figure 3 - Partial behavioral specification of
the Frame Sequencer module.

Error Handler

The Error Handler performs all activities
related to fault confinement, error
detection, counting and signaling. Internally
it implements the mechanisms to detect the
different error types and the error counters
specified on the standard. When an error
frame has to be sent, the transmission is
performed through the Transmission Unit
and the Frame Sequencer
is reinitialized.

Message Buffers

As the name implies, the
Message Buffers are used
to store messages. Two
buffers are accessible from
the outside of the module:
one for transmission and
the other for reception.
However, internally the
Transmission a n d
Reception units contain
shift registers that act as
temporary buffers.

Clock Unit

The Clock Unit generates
all the clocks required to
control and synchronize
the activities of the other
core components.

Behavioral modeling of the CAN controller
has shown that two clock signals are
required for such purposes [7]:

�  a synchronization clock with frequency
fSYNC

Q
SYNC T
f

1
=

where TQ is the Time Quantum period.

� a control clock with frequency fCTRL

SYNCCTRL ff ×= 2

It means that for a given Time Quantum
value, an input clock with only twice the
frequency is needed.

Control Unit

The Control Unit generates all signals that
control the other units, mainly enable and
reset signals. Figure 4 shows a simplified
view of the core internal control sequence
within a CAN bit time. All the units are
triggered at the rising edge of the Control
Clock and during the Time Segment 2, i.e.
after the Sample Point. This imposes some
restrictions on the duration of the Time
Segment 2, namely its minimum duration
must be 2 Time Quanta. This constraint is
required to decrease the number of
internally generated clock signals and to
limit the frequency of the clock applied to
the core for a given transmission rate.

Sync
Seg

Time Seg 1
(Prop Seg + Phase Buf Seg 1)

Sample point

setTxBit

sampleRxBit

syncClk

ctrlClk

(a) (b) (c)

Control Unit
State

Ph 1 Ph 2 Ph 3

(a) -

Bit
Segments

(b) -

(c) -

Frame sequencer update phase; Error handler detection phase

Rx buffer write; CRC unit enable; Bit stuff unit enable;
Frame sequencer execution phase; Error handler update phase

Tx buffer read; Error handler reaction phase

Edges responsible for control unit state transitions

Wait Wait

Time Seg 2
(Phase Buf Seg 2)

Sync
Seg

CAN Bit Time

Figure 4 - CLAN Core internal control sequence.
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Synchronization Unit

The Synchronization Unit generates the
sampleRxBit and the setTxBit clocks used
to latch the reception and transmission
signals at the correct time instants, based
on bus transitions and on the timing
parameters of the node. The period of the
CAN bit is given by the following
expression:

( ) ( )32112 ++⋅+⋅⋅= timeSegtimeSegerbaudRPScalTT CLKBIT

where TCLK is the period of the external
clock applied to the core. The period TCTRL

of the control clock is:
( )1+⋅= erbaudRPScalTT CLKCTRL

The values of the timing parameters must
respect the following relation:

dthsyncJumpWitimeSegtimeSeg >> 21

otherwise the configError output will be
active and the core will remain in the reset
state.

CLAN Microprocessor Interface Module

Based on the CLAN Core module, different
interfaces can be created. The first
interface built was a synchronous parallel
interface with a data bus of 8, 16 or 32 bits.

Interface Ports

The external interface of the CLAN
Controller module is shown on Figure 5. A
short description of each port is given on
Table 10.
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Figure 5 - CLAN Controller module interface.

Name Type Description

reset In Asynchronous reset input

coreClk In Core internal synchronization signal

ioClk In Interface synchronization signal

chipSel In Global interface enable signal

ioEnable In
Enable signals for individual bytes of a
multi-byte data bus interface

write In Write enable signal

address In Address bus

dataIn In Data input bus

dataOut Out Data output bus

intRequest Out Interrupt request for microcontroller

busActivity Out Flag that indicates activity on the bus

busBit In
Port for connection to the reception
transceiver (line-driver)

txBit Out
Port for connection to the transmission
transceiver (line-driver)

Table 10 - CLAN Controller ports.

Figure 6 shows examples of read and write
cycles. The microprocessor changes the
signals at the falling edge of the
input/output clock. The CLAN Controller
validates the signals at the rising edge of
the same clock.

CLAN Drives Data Bus

CPU Drives Data Bus

Write Cycle

addressIn

chipSel

ioClk

ioEnable

write

dataIn

addressIn

chipSel

ioClk

ioEnable

write

dataOut

Read Cycle

Data Valid

Byte Enables

Address Valid

Address Valid

Data Valid

Writing Edge

Reading Edge

Byte Enables

CPU
Reads
Data

Data Written to CLAN

Figure 6 - CLAN Controller write and read
cycles.

Configuration Registers

The configuration registers map into a
space of 128 addresses all the input and
output ports of the CLAN Core module. All
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registers are at a fixed offset location
independently on the bus width (Table 11).

Offset
(Hex)

Register Name
Access

Type

00h Command W

00h Status 0 R

04h Status 1 R

08h Control RW

0Ch Rx/Tx Status R

10h Arbitration Lost Capture R

14h Error Status R

18h Bus Timing RW

1Ch Interrupt Enable RW

20h Interrupt Identification R

24h Rx Error Count R

28h Tx Error Count R

2Ch Error Warning Limit RW

30h Bit Error Count R

34h Stuff Error Count R

38h CRC Error Count R

3Ch Form Error Count R

40h Acknowledge Error Count R

50h Acceptance Mask/Lower Bound RW

54h Acceptance Identifier/Upper Bound RW

58h Rx Message Count R

5Ch Tx Message Count R

60h Rx Message Control R

64h Rx Message Identifier R

68h Rx Message Data 03 R

6Ch Rx Message Data 47 R

70h Tx Message Control RW

74h Tx Message Identifier RW

78h Tx Message Data 03 RW

7Ch Tx Message Data 47 RW

Table 11 - Register names and offsets.

Modeling and Simulation

The CLAN IP block was modeled with the
VHDL hardware description language
because VHDL provides the adequate
abstractions to model the CAN controller
building blocks, such as multiplexers,
registers, state machines, etc. The model
created contains about 3700 lines of code
and it is completely independent of the
implementation technology. Figure 7 shows
the complete project hierarchy. To use the
CLAN IP block as a black box in a project
three components must be included:

�  The file containing the synthesized
netlist;

�  The fi le CAN.VHD containing a
package with generic CAN definitions;

�  The file CLANPublic.vhd containing a
package with CLAN specific definitions.

Figure 7 - CLAN project hierarchy.

Synthesis, Implementation and Test

The CLAN IP block was synthesized and
implemented on a Xilinx XC2S300
Spartan-IIE low cost FPGA. The synthesis
report is shown on Figure 8. It occupies
about 30% of the available slices (logic
cells) corresponding to 100,000 logic gates.
The core internal logic can operate up to
42MHz.

The CLAN Core was tested within a bus
with other commercial CAN controllers
operating at 1Mbit/seg. The test setup is
depicted on Figure 9. The main purpose of
this setup is to perform a simple functional
validation of the controller that must
retransmit all received messages. The
CLAN Controller module was also
integrated on the ARPA System-on-Chip
with a MIPS32 processor optimized for
real-time systems [8].

Final Synthesis Report

==============================================

Device utilization summary:

Selected Device : 2s300eft256-6

Nº of Slices:           931 out of 3072 ( 30%)

Nº of Slice Flip-Flops: 863 out of 6144 ( 14%)

Nº of 4 input LUTs:    1513 out of 6144 ( 24%)

Nº of TBUFs:             32 out of 3072 (  1%)

Nº of GCLKs:              2 out of    4 ( 50%)

Timing Summary:

Speed Grade: -6

Min. period: 23.3ns (Max. Frequency: 42.8MHz)

Min. input arrival time before clock:  11.4ns

Max. output required time after clock: 10.2ns

Maximum combinational path delay:       3.8ns

Figure 8 - CLAN synthesis report.
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Figure 9 - CLAN Core loopback test setup.

Conclusion

A full CAN 2.0B controller with
synchronous parallel microprocessor
interface was presented in this paper. The
IP core was developed for educational and
research purposes. It interoperates
correctly with other commercial controllers.
However, it is important to refer that it was
not validated with the CAN conformance
tests. The web page of the CLAN project
with detailed and updated information can
be found at the following address:
http://www.ieeta.pt/~arnaldo/projects/CLAN
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