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Establishing feasibility of isolating higher-layer protocols 
for CAN into reconfigurable hardware  

Aniket Bhattacharya, John Deere Technology Center – INDIA 

The protocol stack supporting CAN (which encapsulates the overlying layers in the 
OSI 7 – layer abstraction model) is commonly implemented in software possibly within 
an OS or a task scheduler framework. Implementation of the protocol stack in 
software imposes memory overheads and constrains message handling when the bus 
is heavily loaded. Attempts to improve message handling capacity often culminate in 
esoteric, ROM – intensive filtering mechanisms.  

This paper discusses implementation of the protocol stack in an FPGA/ CPLD based 
platform using examples based on J1939. This results in cleaner isolation of reusable 
IP for the protocol stack, preserves provisions to tailor it without being limited by 
resources on the micro, and obviates the need of a CAN interface on the micro.   

Also, the paper identifies the challenges and tradeoffs involved in having this kind of a 
hybrid system with the user application executing off a micro, and the protocol stack 
realized in hardware, focusing on three key areas – time to market, rework in migrating 
from proven software based protocol stacks, and cost implications.  

1 Introduction 

Most often, in modern vehicle applications, 
the CAN protocol stack is implemented as 
software, and shares the same code 
space, data space and resources with the 
ECU application on a microcontroller/ 
microprocessor (hereinafter generically 
referred as micro) based platform. While 
this is a proven technique and has served 
the vehicle systems community well for 
quite a while, increasing complexity of 
vehicle systems are placing additional 
demands on the micro embedded in the 
ECU and putting a premium on the 
resources available to this micro. This, 
coupled with the need to handle and filter 
more CAN traffic, drives designers either 
to select more expensive, resource rich 
micros to re-use the software, or to 
redesign the software using complex, non 
– intuitive techniques to accommodate 
within the existing micro. The increased 
complexity of software is sharply 
accentuated when using embedded OS. 
The CAN protocol stack functionality, 
which should ideally be abstracted as a 
separate layer in the OS, becomes very 
tightly coupled within the OS kernel and 
application layer, rendering any debug 

exercise a very lengthy and time 
consuming process.   
This paper seeks to address this issue by 
proposing a strategy, wherein the CAN 
interface and the CAN protocol stack 
 

Figure 1: Migrating from the classical 
approach to the CAN co – processor 
approach. 
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functionality are realized on a separate 
“CAN co - processor” based on 
Reconfigurable hardware1 (RCD) thereby 
relegating all the protocol functionality to 
the “CAN co - processor” (CCP). This is 
contrasted with the conventional approach 
described above in the figure 1. 
Since, synthesizable IP for CAN interfaces 
targeted at RCDs are commonly available, 
this paper does not delve into the design 
of the CAN interface. Also, as far as 
possible, there has been an attempt to 
suggest a design independent of the 
particular flavor of the CAN protocol used. 
No protocol specific details have therefore 
been discussed. However, part of the 
design partitioning and data flow has been 
explained using J1939 as a representative 
protocol in view of its versatility across 
applications. The paper does not make 
any specific recommendations with regard 
to the micro and the RCD that needs to be 
used, since these will be dictated by the 
application requirements. 
 
2 Requirements 

The different aspects of the requirement 
for the “CCP strategy” introduced in the 
foregoing description are captured as 
follows.  
• The micro should have a fast and 

seamless communication mechanism 
with the RCD embedding the CCP.  

• The CCP should effectively offload all 
protocol functionality from the micro. 

• Any operations that need 
authorization/ privileged access should 
be structured such that the 
authorization granting is retained by 
the micro. 

• The memory subsystem design should 
be cognizant of the fact that RCDs are 
not memory rich resources. 

 
Predicated on these primary requirements, 
a set of intermediate requirements can be 
derived. These are summarized below: 

                                                
1 1 RCD is used as a generic term encompassing all kinds of 
programmable logic devices such as PLDs, CPLDs, and FPGAs. 

 

• The memory should be shared 
between the micro and the CCP.  

• The shared memory should be 
mapped into the data memory of the 
micro, to ensure ease and speed of 
access. (This warrants the use of a 
micro featuring Von – Neumann 
architecture) 

• The shared memory space could be 
zoned into several spaces with read 
and write privileges mutually exclusive 
between the micro and the CCP. This 
minimizes the possibility of 
simultaneous access, thereby 
minimizing the injection of wait states 
when semaphores are invoked.   

• Despite processing a request 
independent of micro involvement, the 
CCP should be capable of notifying the 
micro of any change of status 
warranting the micro’s intervention. 
The same mechanism should allow the 
micro to respond to requests arriving 
from other nodes seeking authorization 
before initiating some sequence.  

The final set of requirements needs to be 
arrived at, after considering application 
and protocol specific caveats. The 
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Figure 2: Generic Hardware schematic 
Legend: The CCP and the micro have separate 
dedicated access to the DPRAM. (Addresses 
shown in violet and green, while data bus shown 
in orange and blue) Semaphore lines are bundled 
together in dark blue, while control signals are 
shown in turquoise. The external memory and the 
DPRAM are both mapped into the micro memory.  
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following illustration (figure 2) depicts a 
generic hardware that would be consistent 
with the above requirements. 
Notice that a Dual port RAM (DPRAM) has 
been used providing for an interface 
mechanism. Use of the DPRAM also 
allows for a shared memory between the 
micro and the CCP which could be 
mapped into the data memory of the micro 
to streamline access from the micro. This 
arrangement also addresses the RCD 
constraint of limited internal memory. An 
interrupt line from the CCP to the micro 
provides for a method to communicate an 
event in the CCP that merits the micro’s 
attention. 
3 Memory subsystem Design 

Figure 3 shows the spaces that the 
DPRAM could be zoned into, along with 
the corresponding access privileges. The 
emboldened labels refer to the spaces that 
could be standard across protocols. The 
other labels denote spaces specific to a 
J1939 protocol implementation. This paper 
does not mandate the memory ranges, or 
organization of these spaces within the 
addressable memory map.   
Command Space: This space in the 
DPRAM is treated as a write stack by the 
micro and can be read by the CCP. 
Whenever any operation is requested by 
the micro, it pushes a corresponding 
“command” into this space qualifying that 
command with necessary parameters. The 
CCP reads this command, interprets the 
context of the command, and uses the 
parameters encapsulated in the command 
format to initiate the desired operation. 
This paper does not stipulate any 
command format, since the format needs 
to be finalized after arriving at the 
supported command set. 
Data Space: These spaces in the DPRAM 
contain the data that needs to be 
transmitted via CAN, or serve as place 
holders for receipt of data. The particular 
data space to be used needs to be 
specified by the command, along with the 
offset within the particular data space, so 
that the CCP can construct the starting 
address of the location in the DPRAM from 
where it needs to fetch data for 
subsequent transmission, or to determine 
the destination for the received data. Thus 

the access privileges (read/ write) though 
mutually exclusive, are context specific.   
Request Space: The CCP treats this 
space as a write stack, while read access 
is retained by the micro. The request 
space contains details about a request for 
a transaction that has been received via 
CAN from another node on the network. 
The CCP writes the request into the 
request space seeking authorization to 
service the received request. The 
authorization is conveyed via a command 
from the micro. 
Status Space: To notify the micro about a 
change of status vis-à-vis a command, the 
CCP pushes status data into this space 
which it treats as a write stack. Thus, 
whenever, the CCP starts servicing a 
particular command, it updates the status 
space accordingly. Likewise, when the 
particular command has been completely 
serviced, or had to be aborted due to 
some reason, the CCP again writes this 
status to the status space. The micro can 
read the status space to determine the 
status of the particular command. 
Interrupt Cause Space/ Register: This 
space/ register substitutes an interrupt 
controller. Write rights for this space/ 
register belong to the CCP, while read 
rights are retained by the micro. 
Whenever, the CCP needs to generate an 
interrupt for the micro, it first writes the 
cause qualifiers for that interrupt into this 
space/ register. The cause qualifiers would 
typically include one field for the interrupt 
category (request/ status) and another 
field containing the offset within the 
request/ status space where further 
information pertaining to that interrupt has 
been written. When the micro reads this 
space/ register consequent to the 
interrupt, it uses these contents to 
dereference the correct space and 
construct an address to read the updated 
status/ request details. 
Active DTCs space2: The micro uses this 
space to write and order diagnostic trouble 
codes (DTCs) into. The first address in this 
space contains a code to indicate whether 
the DTcs are active. The CCP periodically 
reads the first address in this space and 
                                                
2 This space is specific to J1939 protocol stack implementation 
in the CCP. 
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determines whether DTCs in this space 
need to be read, and if so how many. It 
accordingly reads the subsequent 
addresses in this space, and broadcasts 
the DTCs over CAN. (as part of a “DM1” 
message in J1939)  
Previously active DTCs space2: The 
micro uses this space to transfer DTCs 
from the Active DTCs space when they 
cease to be active. Thus write privileges to 
this space are reserved by the micro. The 
CCP seeks read access to this space 
when it gets a “Request DM2” from 
another node on CAN. If and after the 
micro sanctions this access, the CCP 
gains read privileges to this space, and 
responds to the “Request DM2” with the 
data in this space.  
Node names space2: This is a special 
space in that the CCP can gain both read 
and write access, depending on the 
command issued by the micro. The micro 
has read privileges; however it refrains 
from accessing the space while the CCP 
has been commanded to use the space to 
avoid the possibility of a simultaneous 
access. This space is used to maintain a 
table of names of the different nodes on 
the particular CAN. It is periodically (at 
discretion of the micro) populated by the 
CCP to update the set of nodes on the 
network. The first address in this space 
has the self-name of the node and is read 
only for both the CCP as well as the micro 
in normal execution mode.  
Node addresses space2: This too is a 
special space since the CCP can gain 
both read and write access, depending on 
the command issued by the micro. 
Whenever the micro wishes to send a 
destination specific message, it issues a 
command giving the name of the node it 
wishes to send the message to. This is 
indicated by the offset in the name space. 
The CCP uses this offset to read the 
corresponding address from the node 
address space. This address is used to 
assemble the message transmitted. This 
space is also populated by the CCP 
periodically to update the addresses of all 
the nodes on the network. This space 
along with the “Node Names space” is 
crucial to the “address claim procedure” in 
J1939. The first address in this space has 
the self-address of the node, which is 

mirrored within the CCP. This forms part of 
the source address that is sent out in 
every message originating from the 
particular node. In case of a change of 
source address, the CCP updates the first 
address of this space, and reflects this 
change in its internal register as well. 
 
4 Internal architecture  

Figure 3 shows the internal architecture of 
the CCP. This is suggestive only and 
broadly identifies the blocks and their 
functionalities.  The intent is to provide a 
template to base the CCP design from. 
The heart of the CCP is the “CCP master 
state machine” diagrammed in figure 4.  
This is supported by the following blocks: 
• Command Handler block. (CHB)  
• Protocol Implementation block. (PIB)  
• Status generator block. (SGB)  
• Interrupt generator block. (IGB) 
• Request handler block. (RHB) 
The “CCP master state machine”, in 
addition to coordinating all the activities of 
the CCP operation, also embeds the 
interface with the DPRAM. This block 
generates the read and write strobe 
signals and is responsible for semaphore 
handling should a simultaneous access 
situation arise. The state machine unit in 
this block performs the following activities: 
• Routes the address generated by the 

correct support block (including itself) 
to the address bus on the DPRAM.  

• Generates trigger signals for triggering 
the state machines in the support 
blocks. 

To elucidate the operation of the CCP, a 
couple of examples are used.  
Suppose micro A wants to send a request 
for a particular data set (PGN in J1939) 
available with micro B. Micro A accordingly 
constructs a command, encapsulating the 
command code, designator of the data 
requested, offset of the name for micro B 
in the node name space, and an enable 
bit. This command is then pushed by the 
micro into the command space.  
Meanwhile the CCP master state machine 
block (MSMB) is in the default state – the 
“CMD CCL” state – wherein it enables the 
CHB and routes the address generated by 



iCC 2006  CAN in Automation 

03-11 

the address logic module in the CHB to 
the DPRAM address bus used by the 
CCB. As the CHB cycles through the 

command space, it encounters the 
command written by micro A. Since the 
enable bit is set, the CHB splits the 

Figure 3: Suggested internal architecture of the CAN co – processor 
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command into its constituent fields and 
mirrors these fields into a bank of “field 
registers”. It then signals the MSMB, 
causing the main state to advance to “STS 
GEN1”. Here the MSMB triggers the SGB. 
The SGB gets the command designator 
and the offset of the command within the 
command space from the CHB, appends a 
state code for “servicing command” and 
pushes the status thus constructed, into 
the status space. The MSMB 
subsequently advances to the “INT GEN1 
state”, wherein it enables the interrupt 
generator block (IGB). The IGB writes the 
interrupt cause to the interrupt cause 
space/ register which it creates by copying 
the offset in the status space to which the 
status was written by the SGB, from the 
address generation logic in the SGB. 
Further it adds a field to indicate that a 
status update warranted the interrupt. 
Finally, the IGB flags an interrupt to micro 
A, after which the MSMB state advances 
to “PTCL OPER”.  
On receipt of the interrupt, the micro 
inspects the interrupt cause space/ 
register to determine the cause of the 
interrupt. It uses the offset in conjunction 
with the additional field in the interrupt 
cause space/ register to read the 
appropriate address in the status/ request 
space to deduce further information about 
what led to the interrupt. In this case, the 
micro A will read the status space to learn 
that the command it pushed to the 
command space is currently being 
serviced.  
Meanwhile, the CCP has arrived into the 
“PTCL OPER” state. In this state, the 
MSMB provides DPRAM interfacing 
services to the PIB. For instance, the 
message assembler supporting the PIB, 
needs the source address and the 
destination address while constructing the 
request message to be sent out. (In 
J1939) The destination address is 
available in the node addresses space at 
the same offset location as the name of 
the destination device in the node names 
space. This offset is available in one of the 
field registers since it had been sent as 
part of the command. The PIB constructs 
the address accordingly and reads the 
node address space to fetch the 
destination address to pass on to the 

message assembler.  Likewise the PIB 
also reads the first address in the node 
address space (offset = 0) to get the 
source address to pass on to the message 
assembler.  
In the “PTCL OPER” state, the MSMB 
generates the appropriate sequence of 
strobe signals in order to handle suitably 
qualified DPRAM access requests from 
the protocol block.  
The completion of command processing is 
signified by the message assembler 
writing the last (of the series of) 
message(s) to be transmitted into the 
appropriate registers in the underlying 
Logical Link Control (LLC) layer. The LLC, 
along with the Medium Access Control 
(MAC) and Physical Signaling(PLS) layers 
beneath it from the CAN interface, which is 
tasked with dispatching the message over 
the CAN bus.   
When the PIB is done with processing the 
command sent out by micro A, it writes a 
status into an internal register, and signals 
the MSMB to advance to the “STS GEN2” 
state.  
The “STS GEN2” state is similar to the 
“STS GEN1” state except for a field in the 
status register of the SGB that remains 
unpopulated in the “STS GEN1” state. 
This field captures the contents from the 
status register in the PIB. Also, the field for 
the state code is now updated to “serviced 
command”. The Address logic module in 
the SGB does not increment the address 
while in the “STS GEN2” state. The 
contents of the status register in the SGB 
are thus written to the same address in the 
status space.  
From the “STS GEN2” state, the MSMB 
moves to the “INT GEN2” state which is 
identical in the sequence of operations 
carried out, to the “INT GEN1” state. When 
micro A receives an interrupt, it 
dereferences the particular command in 
the command space that has been 
serviced by extracting the command offset 
from the updated status. It evaluates the 
field for the state code and decides 
whether to clear the command enable bit 
to prevent against accidental re-execution. 
Eventually, the MSMB returns to the “CMD 
CCL” state. 
When the CAN interface in the CCP 
associated with Micro B receives the 
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request, the LLC passes on the request to 
the RHB in the CCP, after filtering 
incoming messages. The RHB module is 
similar to the other support blocks in the 
CCP. However additional functionalities 
necessitate an embedded timer unit, and 
the capability to share the 
acknowledgement generation engine 
(AGE) in the PIB. This guarantees a 
response even if authorization is not 
received from micro B. As soon as a fresh 
request is received, the timer starts 
counting down. If the latency involved in 
the micro initiating the response exceeds 
the timeout period for the timer, the RHB, 
in collusion with AGE sends the 
appropriate acknowledgement on the CAN 
bus, and inhibits the command coming in 
from the micro as response.    
If the MSMB is in the “CMD CCL” state 
and it receives a signal from the RHB 
indicating that a request is pending, 
MSMB advances to the “REQ HAN” state. 
In this state the address logic module in 
the RHB pushes the request along with 
the requisite qualifiers into the request 
space, as the MSMB advances into the 
“INT GEN 3” state. The “INT GEN 3” state 
is similar to the “INT GEN 1” state; 
however the IGB fetches the offset from 
the address generator module in the RHB 
and not from the SGB. Further, the 
additional field alluded to earlier, now 
contains a label for the RHB, not the SGB. 
After flagging the interrupt, the IGB signals 
the MSMB to return to the default “CMD 
CYCLE” state. 
Meanwhile, micro B, receives the interrupt, 
and using the procedure detailed earlier, 
reads the correct address in the request 
space, and deduces that a request from 
micro A for a particular set of data has 
caused the interrupt. In case the 
requested data is available and can be 
shared, micro A arranges the data 
contiguously in a data space, and 
constructs the command for transmission 
of data, including a field for the particular 
data space, a field for the offset within that 
space, and a field for the number of bytes 
to be transmitted. It then pushes this 
command into the command space.  
When this command is read by the CCP 
for micro B, it processes the command 
using the procedure in the foregoing 

description. (Depending on the number of 
bytes to be transmitted, the J1939 block 
might opt to use the transport protocol to 
split the transmission into multiple 
messages.) 
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Qualifying note to figure 4: The MSMB 
cycles between “CMD CCL” and “CHK 
ACTDTC” states by default. In the “CHK 
ACTDTC” state, the MSMB reads the first 
address in the Active DTC space to judge 
whether any active DTCs exist. If so, it 
populates the bank of field registers 
accordingly and moves to the “STS GEN1” 
state, wherein the status data register is 
populated with a proprietary data string 
predefined within the MSMB. If no active 
DTCs exist, the MSMB returns to the 
“CMD CYCLE” state. 
 
 
 

Figure 4: Master State Machine 
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5 Highlights 

• The definition of the command allows 
for an enable bit which permits deletion 
of commands prior to processing.  

• A separate status space allows for the 
microcontroller to interrogate the CCP 
without actually interrupting the CCP 
operation.  

• The protocol block includes an 
interpreter to determine the context of 
the command and use the information 
in the field registers accordingly and 
invoke the appropriate constituent 
block in the PIB. Figure 3 shows some 
of the constituents of the PIB for the 
J1939 protocol.  

• Modularizing the design will enable the 
individual blocks to be developed as 
objects which can subsequently be 
instantiated to realize the final design.  

• The PIB is implemented as a separate 
block, so that different blocks 
corresponding to different protocols 
can be plugged in. 

• Incorporation of a scan chain into the 
PIB will allow the contents of the state 
vector registers in the constituent sub 
– blocks of the PIB to be sampled and 
examined at run time. This will give a 
window into the internal working of the 
PIB to an extent that could not be 
possible in the traditional micro based 
approach.    

• Since the CCP is implemented in 
hardware, the PIB operates 
concurrently and processes the 
command independent of the state 
transitions in the MSMB. 

 
6 Conclusion 

As with migration to any new approach, 
the CCP strategy will entail some 
tradeoffs. Adoption of this strategy will 
therefore need to be justified in the light of 
the following challenges.   
• The protocol complexity shall dictate 

the selection of platform for the RCD. 
This will translate to an additional cost 
component for the hardware.  

• Although this can be offset to some 
extent by selecting a lower cost micro, 
(not as resource rich and devoid of 

CAN interface) a change in hardware 
will be required. This change would 
have a trickle down effect, translating 
to higher initial cost.  

• Adoption of the CCP approach will 
necessitate changes in the software 
structure. Depending on the protocol 
complexity and comfort level of 
software developers, additional time 
needs to be budgeted. This will 
adversely affect time to market in the 
short term. 

• Given the ramifications of 1, 2, and 3, 
migration to the CCP strategy can 
presumably be justified in case of high 
volumes of production. 

• However, this strategy can be adopted 
in new developments, where hardware 
designs can be tailored accordingly. 
This strategy affords a lot of flexibility 
to the designer in terms of lesser 
constraints in the selection of micro. 
Since no specific demands are placed 
on the application software, the 
designer also gets more leeway in the 
selection of an embedded OS, if that is 
deemed necessary.    

 
It is believed that adoption of this 
approach will prove to be beneficial in the 
long run. The robustness of this approach 
should allow for easier debugging and 
faster design cycle times.       
 


