
iCC 2006 CAN in Automation

03-7

Establishing feasibility of isolating higher-layer protocols
for CAN into reconfigurable hardware

Aniket Bhattacharya, John Deere Technology Center – INDIA

The protocol stack supporting CAN (which encapsulates the overlying layers in the
OSI 7 – layer abstraction model) is commonly implemented in software possibly within
an OS or a task scheduler framework. Implementation of the protocol stack in
software imposes memory overheads and constrains message handling when the bus
is heavily loaded. Attempts to improve message handling capacity often culminate in
esoteric, ROM – intensive filtering mechanisms.

This paper discusses implementation of the protocol stack in an FPGA/ CPLD based
platform using examples based on J1939. This results in cleaner isolation of reusable
IP for the protocol stack, preserves provisions to tailor it without being limited by
resources on the micro, and obviates the need of a CAN interface on the micro.

Also, the paper identifies the challenges and tradeoffs involved in having this kind of a
hybrid system with the user application executing off a micro, and the protocol stack
realized in hardware, focusing on three key areas – time to market, rework in migrating
from proven software based protocol stacks, and cost implications.

1 Introduction

Most often, in modern vehicle applications,
the CAN protocol stack is implemented as
software, and shares the same code
space, data space and resources with the
ECU application on a microcontroller/
microprocessor (hereinafter generically
referred as micro) based platform. While
this is a proven technique and has served
the vehicle systems community well for
quite a while, increasing complexity of
vehicle systems are placing additional
demands on the micro embedded in the
ECU and putting a premium on the
resources available to this micro. This,
coupled with the need to handle and filter
more CAN traffic, drives designers either
to select more expensive, resource rich
micros to re-use the software, or to
redesign the software using complex, non
– intuitive techniques to accommodate
within the existing micro. The increased
complexity of software is sharply
accentuated when using embedded OS.
The CAN protocol stack functionality,
which should ideally be abstracted as a
separate layer in the OS, becomes very
tightly coupled within the OS kernel and
application layer, rendering any debug

exercise a very lengthy and time
consuming process.
This paper seeks to address this issue by
proposing a strategy, wherein the CAN
interface and the CAN protocol stack

Figure 1: Migrating from the classical
approach to the CAN co – processor
approach.

SCATTERED
PROTOCOL
STACK

APPLICATION

OS KERNEL

MICRO

CAN TRANCEIVER

APPLICATION

OS KERNEL

(CCP)
CAN

PROTOCOL
STACK RCD
(FPGA/
CPLD)

CAN TRANCEIVER
MICRO

iCC 2006 CAN in Automation

 03-8

functionality are realized on a separate
“CAN co - processor” based on
Reconfigurable hardware1 (RCD) thereby
relegating all the protocol functionality to
the “CAN co - processor” (CCP). This is
contrasted with the conventional approach
described above in the figure 1.
Since, synthesizable IP for CAN interfaces
targeted at RCDs are commonly available,
this paper does not delve into the design
of the CAN interface. Also, as far as
possible, there has been an attempt to
suggest a design independent of the
particular flavor of the CAN protocol used.
No protocol specific details have therefore
been discussed. However, part of the
design partitioning and data flow has been
explained using J1939 as a representative
protocol in view of its versatility across
applications. The paper does not make
any specific recommendations with regard
to the micro and the RCD that needs to be
used, since these will be dictated by the
application requirements.

2 Requirements

The different aspects of the requirement
for the “CCP strategy” introduced in the
foregoing description are captured as
follows.
• The micro should have a fast and

seamless communication mechanism
with the RCD embedding the CCP.

• The CCP should effectively offload all
protocol functionality from the micro.

• Any operations that need
authorization/ privileged access should
be structured such that the
authorization granting is retained by
the micro.

• The memory subsystem design should
be cognizant of the fact that RCDs are
not memory rich resources.

Predicated on these primary requirements,
a set of intermediate requirements can be
derived. These are summarized below:

1 1 RCD is used as a generic term encompassing all kinds of
programmable logic devices such as PLDs, CPLDs, and FPGAs.

• The memory should be shared
between the micro and the CCP.

• The shared memory should be
mapped into the data memory of the
micro, to ensure ease and speed of
access. (This warrants the use of a
micro featuring Von – Neumann
architecture)

• The shared memory space could be
zoned into several spaces with read
and write privileges mutually exclusive
between the micro and the CCP. This
minimizes the possibility of
simultaneous access, thereby
minimizing the injection of wait states
when semaphores are invoked.

• Despite processing a request
independent of micro involvement, the
CCP should be capable of notifying the
micro of any change of status
warranting the micro’s intervention.
The same mechanism should allow the
micro to respond to requests arriving
from other nodes seeking authorization
before initiating some sequence.

The final set of requirements needs to be
arrived at, after considering application
and protocol specific caveats. The

MICRO

DPRAM

EXTERNAL
MEMORY

CCP

I
N
T
R

CAN TRANCEIVER

Figure 2: Generic Hardware schematic
Legend: The CCP and the micro have separate
dedicated access to the DPRAM. (Addresses
shown in violet and green, while data bus shown
in orange and blue) Semaphore lines are bundled
together in dark blue, while control signals are
shown in turquoise. The external memory and the
DPRAM are both mapped into the micro memory.

iCC 2006 CAN in Automation

03-9

following illustration (figure 2) depicts a
generic hardware that would be consistent
with the above requirements.
Notice that a Dual port RAM (DPRAM) has
been used providing for an interface
mechanism. Use of the DPRAM also
allows for a shared memory between the
micro and the CCP which could be
mapped into the data memory of the micro
to streamline access from the micro. This
arrangement also addresses the RCD
constraint of limited internal memory. An
interrupt line from the CCP to the micro
provides for a method to communicate an
event in the CCP that merits the micro’s
attention.
3 Memory subsystem Design

Figure 3 shows the spaces that the
DPRAM could be zoned into, along with
the corresponding access privileges. The
emboldened labels refer to the spaces that
could be standard across protocols. The
other labels denote spaces specific to a
J1939 protocol implementation. This paper
does not mandate the memory ranges, or
organization of these spaces within the
addressable memory map.
Command Space: This space in the
DPRAM is treated as a write stack by the
micro and can be read by the CCP.
Whenever any operation is requested by
the micro, it pushes a corresponding
“command” into this space qualifying that
command with necessary parameters. The
CCP reads this command, interprets the
context of the command, and uses the
parameters encapsulated in the command
format to initiate the desired operation.
This paper does not stipulate any
command format, since the format needs
to be finalized after arriving at the
supported command set.
Data Space: These spaces in the DPRAM
contain the data that needs to be
transmitted via CAN, or serve as place
holders for receipt of data. The particular
data space to be used needs to be
specified by the command, along with the
offset within the particular data space, so
that the CCP can construct the starting
address of the location in the DPRAM from
where it needs to fetch data for
subsequent transmission, or to determine
the destination for the received data. Thus

the access privileges (read/ write) though
mutually exclusive, are context specific.
Request Space: The CCP treats this
space as a write stack, while read access
is retained by the micro. The request
space contains details about a request for
a transaction that has been received via
CAN from another node on the network.
The CCP writes the request into the
request space seeking authorization to
service the received request. The
authorization is conveyed via a command
from the micro.
Status Space: To notify the micro about a
change of status vis-à-vis a command, the
CCP pushes status data into this space
which it treats as a write stack. Thus,
whenever, the CCP starts servicing a
particular command, it updates the status
space accordingly. Likewise, when the
particular command has been completely
serviced, or had to be aborted due to
some reason, the CCP again writes this
status to the status space. The micro can
read the status space to determine the
status of the particular command.
Interrupt Cause Space/ Register: This
space/ register substitutes an interrupt
controller. Write rights for this space/
register belong to the CCP, while read
rights are retained by the micro.
Whenever, the CCP needs to generate an
interrupt for the micro, it first writes the
cause qualifiers for that interrupt into this
space/ register. The cause qualifiers would
typically include one field for the interrupt
category (request/ status) and another
field containing the offset within the
request/ status space where further
information pertaining to that interrupt has
been written. When the micro reads this
space/ register consequent to the
interrupt, it uses these contents to
dereference the correct space and
construct an address to read the updated
status/ request details.
Active DTCs space2: The micro uses this
space to write and order diagnostic trouble
codes (DTCs) into. The first address in this
space contains a code to indicate whether
the DTcs are active. The CCP periodically
reads the first address in this space and

2 This space is specific to J1939 protocol stack implementation
in the CCP.

iCC 2006 CAN in Automation

 03-10

determines whether DTCs in this space
need to be read, and if so how many. It
accordingly reads the subsequent
addresses in this space, and broadcasts
the DTCs over CAN. (as part of a “DM1”
message in J1939)
Previously active DTCs space2: The
micro uses this space to transfer DTCs
from the Active DTCs space when they
cease to be active. Thus write privileges to
this space are reserved by the micro. The
CCP seeks read access to this space
when it gets a “Request DM2” from
another node on CAN. If and after the
micro sanctions this access, the CCP
gains read privileges to this space, and
responds to the “Request DM2” with the
data in this space.
Node names space2: This is a special
space in that the CCP can gain both read
and write access, depending on the
command issued by the micro. The micro
has read privileges; however it refrains
from accessing the space while the CCP
has been commanded to use the space to
avoid the possibility of a simultaneous
access. This space is used to maintain a
table of names of the different nodes on
the particular CAN. It is periodically (at
discretion of the micro) populated by the
CCP to update the set of nodes on the
network. The first address in this space
has the self-name of the node and is read
only for both the CCP as well as the micro
in normal execution mode.
Node addresses space2: This too is a
special space since the CCP can gain
both read and write access, depending on
the command issued by the micro.
Whenever the micro wishes to send a
destination specific message, it issues a
command giving the name of the node it
wishes to send the message to. This is
indicated by the offset in the name space.
The CCP uses this offset to read the
corresponding address from the node
address space. This address is used to
assemble the message transmitted. This
space is also populated by the CCP
periodically to update the addresses of all
the nodes on the network. This space
along with the “Node Names space” is
crucial to the “address claim procedure” in
J1939. The first address in this space has
the self-address of the node, which is

mirrored within the CCP. This forms part of
the source address that is sent out in
every message originating from the
particular node. In case of a change of
source address, the CCP updates the first
address of this space, and reflects this
change in its internal register as well.

4 Internal architecture

Figure 3 shows the internal architecture of
the CCP. This is suggestive only and
broadly identifies the blocks and their
functionalities. The intent is to provide a
template to base the CCP design from.
The heart of the CCP is the “CCP master
state machine” diagrammed in figure 4.
This is supported by the following blocks:
• Command Handler block. (CHB)
• Protocol Implementation block. (PIB)
• Status generator block. (SGB)
• Interrupt generator block. (IGB)
• Request handler block. (RHB)
The “CCP master state machine”, in
addition to coordinating all the activities of
the CCP operation, also embeds the
interface with the DPRAM. This block
generates the read and write strobe
signals and is responsible for semaphore
handling should a simultaneous access
situation arise. The state machine unit in
this block performs the following activities:
• Routes the address generated by the

correct support block (including itself)
to the address bus on the DPRAM.

• Generates trigger signals for triggering
the state machines in the support
blocks.

To elucidate the operation of the CCP, a
couple of examples are used.
Suppose micro A wants to send a request
for a particular data set (PGN in J1939)
available with micro B. Micro A accordingly
constructs a command, encapsulating the
command code, designator of the data
requested, offset of the name for micro B
in the node name space, and an enable
bit. This command is then pushed by the
micro into the command space.
Meanwhile the CCP master state machine
block (MSMB) is in the default state – the
“CMD CCL” state – wherein it enables the
CHB and routes the address generated by

iCC 2006 CAN in Automation

03-11

the address logic module in the CHB to
the DPRAM address bus used by the
CCB. As the CHB cycles through the

command space, it encounters the
command written by micro A. Since the
enable bit is set, the CHB splits the

Figure 3: Suggested internal architecture of the CAN co – processor

iCC 2006 CAN in Automation

 03-12

command into its constituent fields and
mirrors these fields into a bank of “field
registers”. It then signals the MSMB,
causing the main state to advance to “STS
GEN1”. Here the MSMB triggers the SGB.
The SGB gets the command designator
and the offset of the command within the
command space from the CHB, appends a
state code for “servicing command” and
pushes the status thus constructed, into
the status space. The MSMB
subsequently advances to the “INT GEN1
state”, wherein it enables the interrupt
generator block (IGB). The IGB writes the
interrupt cause to the interrupt cause
space/ register which it creates by copying
the offset in the status space to which the
status was written by the SGB, from the
address generation logic in the SGB.
Further it adds a field to indicate that a
status update warranted the interrupt.
Finally, the IGB flags an interrupt to micro
A, after which the MSMB state advances
to “PTCL OPER”.
On receipt of the interrupt, the micro
inspects the interrupt cause space/
register to determine the cause of the
interrupt. It uses the offset in conjunction
with the additional field in the interrupt
cause space/ register to read the
appropriate address in the status/ request
space to deduce further information about
what led to the interrupt. In this case, the
micro A will read the status space to learn
that the command it pushed to the
command space is currently being
serviced.
Meanwhile, the CCP has arrived into the
“PTCL OPER” state. In this state, the
MSMB provides DPRAM interfacing
services to the PIB. For instance, the
message assembler supporting the PIB,
needs the source address and the
destination address while constructing the
request message to be sent out. (In
J1939) The destination address is
available in the node addresses space at
the same offset location as the name of
the destination device in the node names
space. This offset is available in one of the
field registers since it had been sent as
part of the command. The PIB constructs
the address accordingly and reads the
node address space to fetch the
destination address to pass on to the

message assembler. Likewise the PIB
also reads the first address in the node
address space (offset = 0) to get the
source address to pass on to the message
assembler.
In the “PTCL OPER” state, the MSMB
generates the appropriate sequence of
strobe signals in order to handle suitably
qualified DPRAM access requests from
the protocol block.
The completion of command processing is
signified by the message assembler
writing the last (of the series of)
message(s) to be transmitted into the
appropriate registers in the underlying
Logical Link Control (LLC) layer. The LLC,
along with the Medium Access Control
(MAC) and Physical Signaling(PLS) layers
beneath it from the CAN interface, which is
tasked with dispatching the message over
the CAN bus.
When the PIB is done with processing the
command sent out by micro A, it writes a
status into an internal register, and signals
the MSMB to advance to the “STS GEN2”
state.
The “STS GEN2” state is similar to the
“STS GEN1” state except for a field in the
status register of the SGB that remains
unpopulated in the “STS GEN1” state.
This field captures the contents from the
status register in the PIB. Also, the field for
the state code is now updated to “serviced
command”. The Address logic module in
the SGB does not increment the address
while in the “STS GEN2” state. The
contents of the status register in the SGB
are thus written to the same address in the
status space.
From the “STS GEN2” state, the MSMB
moves to the “INT GEN2” state which is
identical in the sequence of operations
carried out, to the “INT GEN1” state. When
micro A receives an interrupt, it
dereferences the particular command in
the command space that has been
serviced by extracting the command offset
from the updated status. It evaluates the
field for the state code and decides
whether to clear the command enable bit
to prevent against accidental re-execution.
Eventually, the MSMB returns to the “CMD
CCL” state.
When the CAN interface in the CCP
associated with Micro B receives the

iCC 2006 CAN in Automation

03-13

request, the LLC passes on the request to
the RHB in the CCP, after filtering
incoming messages. The RHB module is
similar to the other support blocks in the
CCP. However additional functionalities
necessitate an embedded timer unit, and
the capability to share the
acknowledgement generation engine
(AGE) in the PIB. This guarantees a
response even if authorization is not
received from micro B. As soon as a fresh
request is received, the timer starts
counting down. If the latency involved in
the micro initiating the response exceeds
the timeout period for the timer, the RHB,
in collusion with AGE sends the
appropriate acknowledgement on the CAN
bus, and inhibits the command coming in
from the micro as response.
If the MSMB is in the “CMD CCL” state
and it receives a signal from the RHB
indicating that a request is pending,
MSMB advances to the “REQ HAN” state.
In this state the address logic module in
the RHB pushes the request along with
the requisite qualifiers into the request
space, as the MSMB advances into the
“INT GEN 3” state. The “INT GEN 3” state
is similar to the “INT GEN 1” state;
however the IGB fetches the offset from
the address generator module in the RHB
and not from the SGB. Further, the
additional field alluded to earlier, now
contains a label for the RHB, not the SGB.
After flagging the interrupt, the IGB signals
the MSMB to return to the default “CMD
CYCLE” state.
Meanwhile, micro B, receives the interrupt,
and using the procedure detailed earlier,
reads the correct address in the request
space, and deduces that a request from
micro A for a particular set of data has
caused the interrupt. In case the
requested data is available and can be
shared, micro A arranges the data
contiguously in a data space, and
constructs the command for transmission
of data, including a field for the particular
data space, a field for the offset within that
space, and a field for the number of bytes
to be transmitted. It then pushes this
command into the command space.
When this command is read by the CCP
for micro B, it processes the command
using the procedure in the foregoing

description. (Depending on the number of
bytes to be transmitted, the J1939 block
might opt to use the transport protocol to
split the transmission into multiple
messages.)

CMD CCL

REQ HANINT GEN 3

CHK ACTDTC

STS GEN1

INT GEN 1

PTCL OPER
STS GEN 2

INT GEN 2

INTR

FLAGGED

RQST

RECD

RQST

WRITTEN

INTR

FLAGGED

RCPT. OF

ENABLED

COMMAND

ACTIVE

DTC

FOUND

STATUS

WRITTEN

RQST FROM

PIB INACTIVE

STATUS

WRITTEN

INTR FLAGGED

RQST

FROM

PIB

ACTIVE

Qualifying note to figure 4: The MSMB
cycles between “CMD CCL” and “CHK
ACTDTC” states by default. In the “CHK
ACTDTC” state, the MSMB reads the first
address in the Active DTC space to judge
whether any active DTCs exist. If so, it
populates the bank of field registers
accordingly and moves to the “STS GEN1”
state, wherein the status data register is
populated with a proprietary data string
predefined within the MSMB. If no active
DTCs exist, the MSMB returns to the
“CMD CYCLE” state.

Figure 4: Master State Machine

iCC 2006 CAN in Automation

 03-14

5 Highlights

• The definition of the command allows
for an enable bit which permits deletion
of commands prior to processing.

• A separate status space allows for the
microcontroller to interrogate the CCP
without actually interrupting the CCP
operation.

• The protocol block includes an
interpreter to determine the context of
the command and use the information
in the field registers accordingly and
invoke the appropriate constituent
block in the PIB. Figure 3 shows some
of the constituents of the PIB for the
J1939 protocol.

• Modularizing the design will enable the
individual blocks to be developed as
objects which can subsequently be
instantiated to realize the final design.

• The PIB is implemented as a separate
block, so that different blocks
corresponding to different protocols
can be plugged in.

• Incorporation of a scan chain into the
PIB will allow the contents of the state
vector registers in the constituent sub
– blocks of the PIB to be sampled and
examined at run time. This will give a
window into the internal working of the
PIB to an extent that could not be
possible in the traditional micro based
approach.

• Since the CCP is implemented in
hardware, the PIB operates
concurrently and processes the
command independent of the state
transitions in the MSMB.

6 Conclusion

As with migration to any new approach,
the CCP strategy will entail some
tradeoffs. Adoption of this strategy will
therefore need to be justified in the light of
the following challenges.
• The protocol complexity shall dictate

the selection of platform for the RCD.
This will translate to an additional cost
component for the hardware.

• Although this can be offset to some
extent by selecting a lower cost micro,
(not as resource rich and devoid of

CAN interface) a change in hardware
will be required. This change would
have a trickle down effect, translating
to higher initial cost.

• Adoption of the CCP approach will
necessitate changes in the software
structure. Depending on the protocol
complexity and comfort level of
software developers, additional time
needs to be budgeted. This will
adversely affect time to market in the
short term.

• Given the ramifications of 1, 2, and 3,
migration to the CCP strategy can
presumably be justified in case of high
volumes of production.

• However, this strategy can be adopted
in new developments, where hardware
designs can be tailored accordingly.
This strategy affords a lot of flexibility
to the designer in terms of lesser
constraints in the selection of micro.
Since no specific demands are placed
on the application software, the
designer also gets more leeway in the
selection of an embedded OS, if that is
deemed necessary.

It is believed that adoption of this
approach will prove to be beneficial in the
long run. The robustness of this approach
should allow for easier debugging and
faster design cycle times.

