
iCC 2006 CAN in Automation

01-1

Improving and testing CiA 401 for the next generation of
I/O devices

Bruce M. Decker, P.E., Schneider Electric, American Global Products

CANopen continues to gain acceptance as a robust protocol for use in a variety of
industries and applications. As this expansion occurs into new applications, the
general-purpose I/O devices required by these applications are starting to push up
against the limits of the CANopen Device Profile that describes them – CiA 401.

In this paper, the author proposes some improvements to this venerable standard
which will allow for a whole new generation of I/O devices to take full advantage of the
CANopen protocol, without being unduly constrained by vestiges of the first
generation which may no longer be needed. Changes to default PDO mapping,
harmonizing the current behavior differences between analog and digital devices, and
making sense of the Device Type object are all examined.

1 Where did the analog field data go?

A controls engineer at a major processing
plant is overseeing the commissioning of a
new CANopen-based control system. A
CANopen system was selected because
of its relatively low cost compared to other
robust field busses. The electricians have
carefully wired several switches and
multiple 4-20 mA sensors and actuators to
the CiA 401-compliant distributed I/O
block. As technicians begin to simulate the
process, the control engineer notices that
the switch actuations are registering state
changes, but that the 4-20 mA sensors are
always reporting a value which makes no
sense, and never changes. Realizing that
this is an unacceptable situation, the
engineer directs the technicians to
troubleshoot the system. After an hour and
a half of investigation, the technicians
report that the distributed I/O system is not
reporting the values from any of the 4-20
mA sensor devices, although the digital
switch information is working just fine. The
engineer then calls the distributed I/O
manufacturer for support.
Over the next few hours, the engineer’s
plea for help is escalated up the vendor’s
support organization. Many different
analytic procedures are tried, to no avail.
Finally, one of the manufacturer’s top
engineers is put on the phone to soothe
the anger of the increasingly frustrated
controls engineer. After spending an hour

on the phone, the manufacturer’s engineer
finally discerns the problem – the control
program simply never set Object 6423h,
the Analog Input Global Interrupt Enable,
to TRUE. As soon as this is done, the
system starts reporting changes in the 4-
20 mA sensors. After nearly a day of
troubleshooting, the commissioning
procedure is finally able to continue.

2 Losing analog precision

Continuing the commissioning process,
the controls engineer begins to transmit
16-bit control values to the 4-20 mA
actuators. The controls engineer quickly
realizes the actuators seem to be
exhibiting an unexpected gain of 2. Then,
as soon as the commanded value reaches
what should be half-scale, the actuator
quickly retreats to the 4 mA position, and
stays there.
Once again, the controls engineer is on
the phone to the I/O manufacturer’s
engineer. This time, the problem is
diagnosed a little faster: because it is a
standard CiA 401 device, all the default
analog RPDOs must be configured for
signed integer values, meaning the
actuators were actually operating on 15-
bit, rather than the 16-bit values the
controls engineer was expecting. This
explains the apparent 2X gain. Since this
specific 4-20 mA output device interprets

iCC 2006 CAN in Automation

 01-2

any negative integer value as a minimum
current situation, it set the output to 4 mA
for all control values over 8000h. In order
for the actuators to work on unsigned 16
bit integer values, the controls engineer
must map the RPDOs into the
manufacturer-specific area of the device’s
object dictionary, where these registers
are defined.
The controls engineer is now quite
frustrated that company management
selected CANopen as the fieldbus. All of
this was supposed to be easy.

3 What does the device type object mean?

By now, the controls engineer has
obtained a copy of CiA 401 and a
diagnostic tool which allows direct
interrogation of the device object
dictionary. The engineer decides to start at
learning the basics of CANopen, and uses
the diagnostic tool to request the value of
the device type register, object 1000h.
The value returned is confusing, to say the
least – it is 401d. Looking at CiA 401, the
engineer believes some of the function bits
should be set. After all, the device has
digital inputs, digital outputs, analog
inputs, and analog outputs. Shouldn’t bits
16 through 19 of object 1000h be set? If
these are not set, then what is the
meaning of the device type object?
The controls engineer is now really
questioning the decision to deploy a
CANopen system.

4 Re-visiting CiA 401

Even though the preceding travails of our
controls engineer are fictional, they are
based upon real, recent events of which
the author is aware. It is these types of
real-world issues which cause many
potential customers to think twice about
deploying a CANopen – based system.
It is apparent the original authors of CiA
401 were trying to write specifications that
were reasonable and usable for the types
of devices which existed at the time. They
greatly succeeded at this. Some devices,
especially CANopen master devices, were
fairly limited in their capabilities a few
years ago. CANopen was new, and not

widely deployed. While the author of this
paper is sure they hoped for wide
acceptance and deployment of CANopen
devices and systems, they could not
possibly have foreseen the issues that the
customer would or could encounter. To
that end, the author believes it is time for
the CiA to re-visit the venerable CiA 401
standard, and to improve the standard so
that it does not become a hindrance to its
own success.

5 Harmonizing analog and digital behavior

Our control engineer’s unfortunate first
scenario, where the engineer assumed
analog and digital input data had the same
basic behavior, has occurred more than
once in the last few years as CiA 401
generic I/O devices are being deployed.
The author’s experience is that many end
users of CANopen devices do not want,
nor do they have the time, to become
CANopen experts. They want their device
to work “out of the box” for their particular
application. When you consider that CiA
401 treats analog and digital inputs
differently, it is really not surprising that
this confusing scenario is occurring time
and time again.
When CiA 401 was written, there was a
very real concern that default-configured
analog input sources would flood the
CANopen bus when the bus was set to the
operational state, because the analog
input modules would immediately transmit
a TPDO for every single least significant
bit (LSB) change – possibly just noise in
the signal. For digital data, there was no
similar concern. As a result, TPDOs for
digital inputs are enabled as soon as the
bus is set to operational, while analog
TPDOs must be explicitly enabled by
setting the conditionally required object
6423h to TRUE. There is an optional
object (6005h) which may be used to
globally enable or disable the sending of
8-bit digital TPDOs. Even if this object is
implemented, the default value would be
set to TRUE, so the behavior of a default
configured system would still be the same.
In retrospect, perhaps it would have been
better if CiA 401 had used a different
mechanism for analog TPDOs. For
example, the TPDO Inhibit Time default

iCC 2006 CAN in Automation

01-3

value could have been set to 100
milliseconds, insuring that the analog
TPDOs did not flood the bus. However,
this was not done because Inhibit Time is
optional for PDOs.
If there were no CiA 401 compliant units
deployed, it would be a simple matter to
make the analog and digital input
behaviors identical, and to come up with a
better solution to the bus flooding issue.
However, there are many CiA 401 devices
deployed, and making the behaviors
consistent in the standard would create a
massive and unacceptable backwards
compatibility nightmare. However, there is
a simple solution.
The underlying problem for our controls
engineer was more subtle. Even if the
engineer knew a priori that he/she needed
to set the state of object 6423h to TRUE,
the engineer still has no way of knowing
that it actually occurred! This is even more
serious a situation when a “minor”
modification is made to an existing
application program which accidentally
deletes the setting of the object. If the
analog inputs are being used as feedback
values for the process control, such as
might occur in a simple Proportional-
Integral-Derivative (PID) loop, the process
can be actually out of control until some
other (digital) indicator sets an alarm.
Clearly, this is not acceptable. The user
needs to know immediately if the analog
TPDOs are inhibited when the CANopen
device is set to its operational state.

6 A simple compromise solution

The simple solution to this problem is to
modify CiA 401 to require all analog input
devices to send an EMCY message (the
value to be determined) immediately upon
transitioning to the operational state if
object 6423h is set to FALSE. This allows
backwards compatibility with existing CiA
401 devices, and provides a means for
immediate feedback to the user. Since the
user may actually want the analog PDOs
off for some reason, this condition cannot
be considered a device fault, and thus the
device will not automatically transition to
the pre-operational state when this occurs.
The user can choose to ignore this EMCY
message at their own risk, or they can

execute an application - appropriate
procedure to prevent a catastrophe.

7 The default PDO mappings

Our controls engineer’s second headache
was caused by a misunderstanding of the
CiA 401 default mappings. Once again,
the original authors of CiA 401 were trying
to achieve a level of uniformity between
devices, given the capabilities of the
CANopen masters and slaves at the time.
But again, the capabilities of modern
automation devices are turning these
attempts at simplification into a hindrance.
To set the philosophical groundwork for
the next proposal, let us take a quick look
at another scientific discipline: object-
oriented (OO) software programming.
Two of the foundational principles of OO fit
together like a hand in a glove –
abstraction and encapsulation. These two
principles combine to give rise to the
concept of an object class, which
describes a standard interface to the
object, as well as the behaviors of the
object when the interface is accessed by
another object. The major tenet of
encapsulation is that the object class itself
determines its own behavior. This principle
means that a member of a particular
object class is in control of what it does,
and another object cannot make it do
something it is not capable of doing.
A third foundational principle of OO is
inheritance. Any object class can be
“refined” by deriving a child class from it.
The child class “inherits” the interface and
behavior of the parent object, but is free to
modify the particulars to suit the needs of
the application program.
Let us now come back to CiA 401 and
apply these OO principles to compliant
devices. Consider: if a device is designed
to handle 4-20 mA devices, where
negative data values are meaningless,
why should it be forced to default to
mapping signed integer values? If we
apply the OO principles described, we can
conclude that the device should tell the
CANopen master what type of data it
handles, and not the other way around.
After all, if we consider that the 4-20 mA
output device is a child class of the analog
output parent class, should it be required

iCC 2006 CAN in Automation

 01-4

to support what is at best, sub-optimal
data types? In the author’s opinion, this
should not be the case.
Let us take another example. CiA requires
digital input or output devices to support 8-
bit data words by default. But what if a
manufacturer needs to make a 16-bit
cohesive digital module for a particular
market need? There are several issues
here. First, CiA 401 does not prescribe
how to map 16 bit data onto 8 bit objects,
so it is conceivable that different vendors
will map it different ways, creating an
interoperability (or rather, a non-
interoperability) headache. In addition, the
manufacturer is now burdened with double
mapping of the object. If the device is a 16
bit input device, it makes sense to use
object 6100h for the data value. But the
standard requires it to simultaneously be
mapped to object 6000h for 8 bit
compatibility. Needless to say, this is a
disincentive to manufacturing anything
other than a 8 bit digital I/O device.

8 Let the device determine the default PDO
mappings

As applications for CANopen devices
proliferate, the author believes the newer
devices should determine what objects are
mapped into the PDOs, based upon what
makes sense for the device. A 16 bit
digital input device could map object
6100h into the first TPDO. And if the
device has multiple digital channels, and
does not support analog inputs, it could
map several sub-indices of object 6100h
into TPDO2 through TPDO4!
A little more work must be done to satisfy
the 4-20 mA requirements. CiA 401 does
not currently specify standard objects for
unsigned analog data, only for 8, 16, and
32 bit signed integer data plus floating
point values. These new objects would
need to first be defined and then they
could be mapped into any of the first four
PDOs. An alternative to this is to add a
sub-index to the existing objects which
specifies the default data type. But this
approach is not consistent with the way
digital objects are handled.
Of course, this puts more responsibility on
the future CANopen masters. They must
know, as part of their configuration time, to

read all the default PDOs, and how to
interpret the data based upon the objects
being mapped. Since modern CANopen
masters have more processing capability,
this should be no issue.
In order to insure compatibility, as well as
signal the master that the device conforms
to the new version of the specification,
there must be an indicator mechanism
defined. One of the currently undefined
bits in object 1000h, for example bit #22,
could be utilized for this purpose. See
figure #1 for the current structure of object
1000h in a CiA 401 device.

9 Making object 1000h more meaningful

Our controls engineer’s final conundrum
came from looking at object 1000h. A
value of 401d was certainly a legal value.
The specification clearly states: “Any
combination of digital/analogue inputs and
outputs is allowed”, which presumably
means no functionality bits being set is
also allowed. But the engineer had to
wonder, why weren’t the capability bits
reporting useful information about the
device?
Of course, the manufacturer may have
had a good reason to not set the bits.
However, it is hard to say the device is
truly CiA 401 compliant if the upper 16 bits
of object 1000h are all zeros. These upper
16 bits are supposed to indicate the
existence of the specified mappings and
objects for each type of capability.
The CiA Conformance Testing Task
Force, of which the author is a member,
has examined this issue. Many of the
members are of the opinion that a generic
I/O device cannot be considered CiA 401
compliant unless at least one of the bits is
set, (or a special function, e.g. joystick, is
indicated) and the required objects and
mappings for the indicated capabilities are
conformant with the specification.

iCC 2006 CAN in Automation

01-5

Figure 1: CiA 401 Object 1000h

10 Device profile conformance testing

Although some people may not realize it,
the discussion of the function bits in object
1000h raises another question: how will
CiA 401 devices be tested for
conformance?
At the time of this writing, no official CiA
401 conformance test exists, although the
charter of the CiA Conformance Testing
Task Force (TF) is to develop one, as well
as a test for CiA 402. Object 1000h will be
the key to the test.
The current thinking of the task force is
that a manufacturer desiring conformance
testing shall first pass the EDS and CiA
301 conformance tests before proceeding
to the device profile test.
The first object to be interrogated in the
device profile test will be object 1000h. If
the value of object 1000h is 401d, the test
will halt, because nothing else can be
tested. The device cannot really be
considered CiA 401 compliant, although it
still may be CiA 301 compliant.
For the current version of CiA 401 devices,
the conformance test will continue based
upon the bits set in object 1000h. If the
digital input bit is set, the test will look at

the mapping of the first TPDO to insure it
is default mapped to object 6000h. It will
also verify that all the required objects for
the digital input function exist and have
their proper default values.
Assuming no failures, the test will examine
the CiA 401 required objects and default
values for digital outputs, and the analog
input and outputs based upon the bits set
in object 1000h.
If any of the function bits are cleared, the
conformance test will make sure that none
of the standard objects for that function
exist, and that no PDOs are mapped to
these non-existent standard objects.
For the next generation of CiA 401
devices, object 1000h will still be the key
to proper conformance testing. The major
difference will be to check that the default
PDO mappings are made to standard
objects which are legal for the function,
and that they match the entries in the EDS
file. For example, if a new generation
device reports analog output functionality,
the PDOs must map to any of the existing
analog output objects, or any of the newly
defined unsigned analog output objects.
11 Summary

The preceding suggestions for improving
CiA 401 have been formally submitted to
the CiA for consideration. The intent is to
make sure the standard does not become
a hindrance to its adoption for the next
generation of CANopen I/O devices. As
the suggestions are considered by the
CiA, many other good suggestions are
likely to be brought forward. It is the
author’s hope that the next version of CiA
401 will be flexible enough to allow
common-sense adaptations of devices so
device manufacturers may solve their
customers diverse requirements.
12 Acknowledgements

The author would like to thank Messrs.
Jochen Weiland and Günther Wenzel of
Schneider Electric and Mr. Roland Rauch
of Berger Lahr for their help in developing
the suggestions set forth in this paper.
References

[1] CiA Draft Standard 401, CANopen Device
Profile for Generic I/O Modules, Version. 2.1,
17 May 02, CAN in Automation e. V.

I/O
Functionality

Specific
Functionality

Device Profile
Number = 401d

31 24 23 16 15 0

I/O Functionality:
Bit 16 – Digital Input
Bit 17 – Digital Output
Bit 18 – Analog Input
Bit 19 – Analog Output
Bits 20 to 23 – Reserved

Specific Functionality Code:
0 – No specific functionality
1 – Joystick
2 to FFh - Reserved

