
iCC 2006 CAN in Automation

03-1

Implementation of automotive CAN module requirements

Alan Devine, freescale semiconductors

At first glance all CAN modules are very similar, the only difference being the number
of message buffers which are included in the implementation. Depending on the
number of buffers the module is often referred to as FullCAN or BasicCAN. A FullCAN
implementation normally has an array of message buffers that can be configured as
Transmit (Tx) or Receive (Rx) whereas BasicCAN has a limited amount of Tx buffers
and an Rx FIFO(s). However, there are several other key requirements for a CAN
module that are important in the selection of the most suitable module for an
application, as they can have a big impact on the efficiency of the software.

This paper discusses the main functional requirements of a CAN module for the
automotive market and explores different implementations of the key requirements.
Specifically, it compares implementing the requirements within a standalone module
with the alternative approach of using a simpler CAN macro in conjunction with other
standard MCU resources, such as system RAM, co-processor and DMA, which are not
dedicated to CAN.

1 Introduction

This paper discusses the important
functional requirements of message
buffering, message filtering, and
communications gateway (the transfer of
data between different nodes on the same
Electronic Control Unit (ECU)) of a CAN
module that will be integrated within a
microcontroller (MCU). Each of the
requirements are discussed in detail and
possible implementations suggested.

2 Message buffer requirements

A CAN module is known as a BasicCAN
module or a FullCAN module depending
on its buffer configuration. However, the
message buffer (MB) configuration and
total number of MB’s are not the only
important requirements placed on the
buffers. During transmission it is
important to ensure that the CAN node
can transmit a stream of high priority
frames without a lower priority frame, from
another node, interrupting the stream.
This problem is known as outer priority
inversion and requires the internal
processing time of the CAN module to be
smaller than the minimum Inter Fame

Space (IFS) to guarantee that consecutive
frames from a node can be sent. Figure1
shows the outer priority problem. In this
example the lower priority frame1 (Node2)
is inserted between the higher priority
frames 1 and 2 (Node1) on the CAN bus,
as the internal processing time of node1 is
greater than the IFS.

time

High Priority1 High Priority2 High Priority3

> IFS

low Priority1 low Priority2

low Priority1 low Priority2High Priority1 High Priority2 High Priority3CAN Bus

Node 1

Node 2

<IFS

IFS = minimum Inter frame Space

Figure 1 - Outer priority inversion

In order to avoid this problem the MB’s
needs to be loaded immediately after
transmission and typically requires more
than a single transmit MB to decouple the
reloading procedure from the current
transmission. The decoupling is also
required to increase the amount of time
that the CPU has to reload the MB’s.
Without this decoupling it would be very
difficult to guarantee that the software can
reload the MB’s fast enough. Normally a

iCC 2006 CAN in Automation

 03-2

minimum of 3 transmit MB’s are required
to cover all circumstances, as problems
can arise if only 2 MB’s are used. e.g. If
the sending of a message is finished and
the second buffer is still being reloaded.

The module must also ensure that the
highest priority scheduled frame is
transmitted first onto the bus. Each Tx MB
needs to have an internal priority
mechanism to allow the highest priority
frame the opportunity to fight for bus
arbitration. This is particularly important
for the transmission of Transport Protocol
(TP) messages which can have the same
ID, but need to be transmitted in
chronological order. The module also must
not block high priority messages from
transmission by lower priority scheduled
messages already loaded in the Tx MB’s.
This problem is known as inner priority
inversion and is shown in figure 2. This
can occur when the other nodes on the
network are transmitting higher priority
frames (lower ID) than the locally
scheduled frames. Subsequently, if all Tx
MB’s of the local node are full and blocked
from transmitting due to the bus traffic, the
transmission of a new higher priority frame
(local node) is then delayed until a
scheduled frame is successfully
transmitted. In order to avoid this from
happening hardware cancellation needs to
be supported on the Tx MB’s to allow the
new higher priority frame to be loaded into
a buffer and allowed to fight for bus
arbitration.

CPU
Interface

CAN
Protocol
engine

Message
filtering +
buffering

Control
+ status

H/W
Errors

TX

RX

Physical

interface
CAN bus

CANH

CANL

Tx MB’s full, but unable to

transmit due to high

priority traffic from other

nodes (i.e can not win bus

arbitration)

Physical

interface

CAN

Node2

High Priority traffic

on CAN bus from

CAN node2

New high

priority

message

unable to be

transmitted

Figure 2: Inner priority inversion

The receive path is just as critical as the
transmit path. In the ideal world the
number of receive MB’s should be equal to
the number of unique messages to be
received and each Rx MB’s should have
an associated queue to allow the CPU
more time to service the MB before data is
lost. However, as all applications are not
identical it is impossible to fix the number
of MB’s that would match all
circumstances. Typically, FullCAN
implementations with 16, 32 and 64MB’s
variants are available, as the cost of
modules with more dedicated MB’s
becomes prohibitive. If more frames than
MB’s exist, then multiple frames need to
be received in some of the MB’s, which is
possible using hardware filtering (see
following section). Several possible
solutions exist to extend the number of
MB’s per node.

One possible solution is to use the MCU’s
system RAM for the MB’s, which allows
the number of MB’s to be configured at the
expense of the RAM. This is a very
attractive approach due to the flexibility,
but as the number of CAN modules on a
single MCU increases, 6 at the last count,
this becomes more difficult to handle and
can lead to system performance issues.
The MCU architecture also has to be able
to allow the CAN module(s) to be a bus
master so that they can directly access the
system RAM. This will inevitably require a
new CAN module design.

An alternative solution is to develop a CAN
module that can share a common pool of
local RAM (MB’s). Thus, the number of
MB’s per module can be optimized to the
application requirements. For example a
node on the bus may require 48MB’s and
another only 16MB’s. This could be
satisfied with a total pool of 64 MB’s. If a
shared pool of memory is not used, It
would require a 16MB’s FullCAN and
64MB’s FullCAN module, which results in
80MB’s. This example assumes only 16,
32 and 64MB’s FullCAN's are available. It
is also typical that multiple CAN modules
on a MCU have the same amount of MB’s.
In the worst case two 64MB’s CAN
modules would be used, resulting in a total

iCC 2006 CAN in Automation

03-3

of 128MB’s when only 64 are required.
Thus, with a pool of memory approach it
would be possible to support the
requirements of both nodes with fewer
buffers which would result in a smaller
CAN module.

A further solution is to offer a BasicCAN
implementation and use an on chip DMA
or co-processor to build the MB’s in
system RAM. This is a very flexible option,
however to be truly effective the DMA
should be coupled with a CAN module
with a perfect receive filter (see next
section) and the CAN module needs to be
able to operate with the DMA. If a co-
processor is used the hardware filter can
be simplified, as the co-processor can
efficiently handle software filtering and it
should be possible to reuse an existing
CAN module.

A further requirement on the receive
buffers is the ability to ‘queue’ the received
frames to increase the amount of time the
CPU has to handle the reception without
the loss of data. If messages are queued it
is important that the chronological order is
kept, thus a hardware FIFO is normally the
best solution. However, other approaches
which are more flexible than a hardware
FIFO could also be implemented. For
example several MB’s could be joined
together to make a queue. This solution
offer’s the ability to customize the number
of Rx queues and depth of queues at the
expense of individual MB’s. The second
approach could be a hardware linked list
where the queue is dynamically allocated
from a pool of Rx buffers. Both of these
approaches are attractive as they offer
more flexibility than the FIFO solution. The
main drawback would be additional
software overhead compared to a fixed
FIFO and the module complexity.

3 Message filtering requirements

One of the most important requirements
for any CAN module targeted for
automotive applications is its ability to
reject frames that are not intended for the
particular node. This is known as message
filtering and is important as it can vastly

reduce the number of interrupts that a
CPU has to handle. Essentially, the
message filter block compares an
incoming frame’s arbitration field against a
preprogrammed filter value that is normally
configured at initialization. If the incoming
message’s arbitration field matches the
filter value, the entire frame is stored in the
CAN modules hardware Rx MB and an
interrupt request is sent to the CPU (if
enabled). If a match does not occur the
frame is not copied into a MB and an
interrupt request is not generated. The
Bosch CAN specification (CAN2.B)
optionally includes mask bits that allow
any ID bit to be set as don’t care in order
to accept groups of identifies to be
received. Most controllers have this basic
level of message filtering, however, due to
the large number of ID’s used within
modern CAN networks, this basic filtering
is not always capable of accepting only the
frames intended for the specific node.
This leads to the leakage of unwanted
frames through the filter which increases
the interrupt and CPU loading, as the CPU
needs to perform secondary software
filtering on all messages. Figure 3
demonstrates this filtering concept.

000000000000001011

000000000000001111

000000000000001110

000000000000001101

000000000000001100

111111111111111100

000000000000001111

Extended ID

ID17………………..ID0

Rejected100001111111RX Frame5

Accepted100001111111RX Frame4

Accepted100001111111RX Frame 3

Accepted100001111111RX Frame 2

Accepted100001111111RX Frame 1

111111111111RX Mask

100001111111MB ID

Reception

Status

IDEBase ID

ID28……ID18

Figure 3: Bitwise masking example

It can be seen for the example that frames
with ID’s in the range 0x01FC000F to
0x01FC000C are accepted as ID bits 0
and 1 are set to don’t care (00). With this
approach it is relatively simple to receive
groups of frames. However, this filter
concept is not 100% effective (reject all

iCC 2006 CAN in Automation

 03-4

unwanted frames). For example it is not
possible to only accept the contiguous
range ID3 to ID13. (See figure 4 for a
further example)
In automotive networks several types of
messages are present and the different
message types are often grouped into
separate ranges. For example it is
common to find application messages,
diagnostic messages, network
management messages and transport
protocol messages. The latter 2 types can
usually be filtered with the bitwise masks
discussed above. The application
messages are more difficult to filter, as
they can be grouped into a mixture of
bitwise ranges, contiguous ranges and a
collection of individual ID’s. Figure 4
shows a sample of frame ID’s used within
a real application.

Message ID Filter type Filter Example

0x280 ID - 0x280

0x288 MSK- 0x3F7

0x440 ID - 0x440

0x540 MSK- 0x6FF

0x5E0 0x5E0

0x271 0x271

0x3E1 0x3E1

0x389 0x389

0x300 - 0x30F ID - 0x300

MSK - 0x3F0

0x693 START - 0x693

0x694

0x695

0x696

0x697 END - 0x697

Contiguous

Range

Bitwise Mask

Bitwise Mask

Look Up

Table(LUT)

Bitwise Mask

Figure 4: Filtering example

It can be seen from the example that the
bitwise mask approach specified within the
CAN specification is not flexible enough to
accept only the frames for the specific
node. A mixture of bit masks, contiguous
range and a LUT are necessary to create
a 100% effective filter. Note: If the LUT
was big enough there would be no need
for the other filter types, however this
would lead to excessively large LUT.
Another solution is to use a FullCAN
implementation where the number of Rx

MB’s is greater than the number of frames
to be received. In this case each MB
accepts a frame with a unique ID and
since there are more MB’s than frames to
be received, only the intended frames are
accepted. However, there is normally a
limitation to the number of MB’s that are
implemented due to the additional cost. In
the case that there are more frames than
MB’s it is still possible that unwanted
frames are received. Although, this
possibility can be reduced by including bit
filter masks on each MB, which enable a
particular range to be received. The main
problem is that there is not a standard
definition of CAN frame ID’s in the
automotive industry and that it would be
excessively expensive to build a hardware
filter block to cover every situation.
There exist several different approaches to
solve the filtering problem. The first is to
keep adding extra hardware filters, which
can be configured for bit masks,
contiguous ranges and the inclusion of a
LUT for the individual identifiers. This has
the main advantage of simplicity to the
user and should be more cost effective
than a single large LUT. The main
disadvantages are inflexibility and cost.
The silicon manufacturer still has to make
assumptions about the maximum number
of filters to include and invariably there will
be applications that require more flexibility
than offered.
The second option is a subtle variation on
the first. Essentially, the same filter blocks
are used, but they are shared across
multiple CAN channels which in theory
should lead to a smaller amount of blocks
and reduced size. The idea is that different
channels require different amounts of
filtering for different applications, thus it is
possible to have very flexible filtering on
one channel at the expense of another
channel. This is attractive as the total
number of filter blocks required, to achieve
the same level of filtering, should be less
than the previous solution. However, to be
effective the CAN module needs to
support multiple channels, which adds to
the design complexity that has implications
on test and assumptions still need to be
made for the amount of filter blocks to
include.

iCC 2006 CAN in Automation

03-5

The third option is a software approach
that uses a co-processor that has been
specifically developed to quickly handle
interrupts. This is the only approach that
offers a 100% effective filter for all
applications. The co-processor executes
the software filter algorithm and only
interrupts the main core when a successful
match has been detected. In addition the
co-processor can perform more than the
filtering algorithm, for example servicing of
the hardware which is wasted effort for all
unwanted frames. The main disadvantage
with this approach is the added complexity
to the hardware, the software which needs
to be taken into account and the small
percentage of bus bandwidth that will be
used when the co-processor is executing.

4 Communication gateway requirements

Another function that is becoming more
important, particularly in the automotive
area, is the CAN gateway. In a typical car
there are between 3-6 CAN networks
connected by a gateway node. The
sharing of data between networks is
referred to as a gateway. Gateways are
normally a mixture of frame gateways (the
entire frame is copied to another network
without changing content of the frame) and
signal gateways where selected signals
(data within the frame) are copied into one
or more frames. Figure 5 shows an
example of a frame and signal based CAN
gateway.

Identifier

Gateway

Frame

Identifier

Frame

Frame

Identifier

Gateway

Frame

Signals

Identifier

Signal based CAN messages gateway

Frame based CAN message gateway

• All signals for a gateway frame do not
always arrive at the same time

• The same signals can be copied to several
gateway frames.

Figure 5 – Frame and signal based
gateway

If several signals need to be copied from a
source message to a destination frame or
frames this can consume a high
percentage of the CPU bandwidth, as
many masking and shifting operations are
required. Adding specific gateway
functionality to a CAN module can help to
off load the CPU when performing these
gateway tasks. In addition there have
been cases where OEM’s have mandated
that parts of the gateway function needs to
be performed without the main CPU’s
intervention. An example of this is a simple
mirror function that autonomously copies
frames from any bus to the diagnostic bus.
Different methods of adding gateway
functionality to a CAN module are
possible. The first is to add a hardware
wrapper that can be considered to logically
sit above the CAN modules. In this method
the wrapper accepts frames from each
CAN module and performs the frame and
signal gateway autonomously. This
method has the advantage that it can be
made to work without having to fully
redesign the CAN module and as the
gateway functions are performed in
hardware it does not consume any CPU
bandwidth. The main drawback is that the
wrapper would be fairly complex to handle
all possible combinations of signal
gateways.
The second method is to introduce
gateway functionality into the module
itself, which only makes sense if the CAN
module can support multiple CAN
channels. The benefit of this approach is
similar to the first in that a hardware
approach does not consume CPU
bandwidth. The main disadvantages are
that a new CAN module needs to be
developed, that CAN module would be
complex and the gateway functionality is
restricted only to CAN.
The third method is to add a small co-
processor to the MCU that can be
programmed to perform the gateway

iCC 2006 CAN in Automation

 03-6

functionality. As this solution is fully user
programmable it is the only method that
can ensure all gateways can be handled
independent from the main core. It has the
advantage that an existing CAN module
can be used without redesign and the co-
processor could be used to gateway more
than CAN frames. Several other
networking protocols are becoming
prevalent within the automotive industry
and signals from each network need to be
combined. It will become typical for
automotive gateways to combine CAN,
LIN and FlexRay signals. For example the
current AutoSAR1 standard includes a
CAN/LIN/FlexRay gateway specification.
The main disadvantage of the co-
processor is that it shall consume a finite
percentage of the memory bandwidth and
there is additional software overhead.

5 Conclusions

Automotive customers place specific
requirements on the CAN module and
even within the same customer the
requirements can be different, depending
on the application. (e.g. Body, Gateway,
Powertrain, etc). This makes it very
difficult for a single CAN module to be the
best fit for every application. From a silicon
design point of view it is very important to
build as much flexibility into the module as
possible and at the same time keep the
die size small. Driver software also needs
to be considered, particularly with the
introduction of AutoSAR, as there no point
building in many hardware features that
will never used.
Considering the requirements discussed in
this paper the Tx buffers need to be such
that inner and outer priority inversion is
avoided. This requires hardware support
for local priority, hardware cancellation
and buffer decoupling. On the receive
side a hardware FIFO should be included
to increase the time the CPU has to
receive frames and to guarantee

1 AUTOSAR (AUTomotive Open System
Architecture) is a development partnership.
The objective of the partnership is the
establishment of an open standard for
automotive E/E architecture

chronological order is maintained. It is
also desirable to have a module that can
be configured in a BasicCAN and/or
FullCAN mode. In terms of filtering it is
very difficult to build a hardware filter that
can reject all unwanted message frames
for every application. Adding a co-
processor solves this problem as a perfect
filter can be constructed in software which
will only interrupt the main core when a
valid frame is received. The co-processor
can also be used to add flexibility to the
buffer management as extra Rx and Tx
buffers can easily be emulated in system
RAM. Furthermore, it is very attractive
solution for the gateway as all routing
combinations can be built in software and
other protocols can be combined. The
solution of using a co-processor and a
small CAN module, with required
hardware support to avoid priority
inversion and reception handling, offers a
very flexible solution that is suitable for
many different applications.

