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CAN configuration within Autosar 

 Dr.-Ing. R. Machauer, Bosch Engineering GmbH 

AUTOSAR (AUTomotive Open System ARchitecture) aims to standardize interfaces 
between software application functions and further between application functions and 
basic software modules in ECUs (Electronic Control Unit). Independence from 
underlying hardware and this modular software design allows exchangeability of 
software functionalities amongst ECUs. The integration of functions from different 
suppliers is established through a virtual function bus. The mapping to a certain 
network topology (or to ECUs) is carried out after that step. In this paper configuration 
of a CAN stack and related basic software modules in system architecture 
development according to AUTOSAR is shown.  

1 Introduction 

Nowadays in automotive environment E/E 
systems comprise of many ECUs, which 
are connected via different bus systems 
(CAN, LIN, FlexRay, MOST, proprietary 
serial lines, etc.). In luxury cars the 
number of ECUs may even reach 70. They 
are classified into several system domains 
like powertrain domain, chassis domain, 
body domain, safety, infotainment, etc. 
Inter domain communication is established 
through gateways. The functional behavior 
of an ECU is specified by the Original 
Equipment Manufacturer (OEM), and 
implemented by the hardware supplier. 
Each ECU implements certain application 
functions, which interact in some way with 
other ECUs. It is a common approach, that 
ECU hardware manufacturers also supply 
application software with their ECU. With 
this approach the system integration 
medium is more or less the bus system 
the ECU is connected to. With such a 
large number of ECUs and interacting 
functions error detection within a system is 
a challenge for the system integrator. The 
driving forces for AUTOSAR are [1]:  
• Exchangeability of functional modules 

(multiple suppliers)  
• Manage increasing E/E complexity 

associated with growth in functional 
scope, which yields to improved quality 
and reliability of E/E systems 

• Higher flexibility for product 
modification, upgrade and update 

• Enable detection of errors in early 
design  phases 

The AUTOSAR partnership was 
established in summer 2003 [1]. First 
release of AUTOSAR specification was 
published in mid 2005. A second release 
followed during the first quarter of 2006 
[2]. In chapter 2 a short technical overview 
of the AUTOSAR concept and its layer 
model is given. In chapter 3 the Basic 
Software (BSW) modules of 
communication software(COM stack) and 
the underlying layers are discussed in 
detail.  
 
2 AUTOSAR concept 

The AUTOSAR software architecture 
provides new design choices to software 
engineers building distributed, 
communication software systems. A key 
aspect of this architecture is a design 
abstraction called the AUTOSAR Virtual 
Function Bus (VFB) (rf. Figure 1). VFB 
allows the design of software systems 
without reference to target hardware. 
Hence during the design process the 
mapping to a specific hardware is shifted 
to later phase. The VFB is the collection of 
all communication mechanisms (plus 
some interfaces to the basic software) on 
an abstract level. 
An AUTOSAR system is build from of a 
set of software components (SW-Cs). 
Interaction among SW-Cs is accomplished 
only through statically defined ports. Each 
port is assigned an interface type, defining 
the “way” of communication. Two 
communication paradigms are provided for 
SW-C ports, called sender-receiver and 
client-server communication; Sender-
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receiver provides message passing, 

 

Figure 1: Virtual Function Bus [3] 
whereas client-server communication 
invokes a service function call. VFB allows 
an early (virtual) integration of SWCs as 
soon as the communication mechanism 
amongst SW-Cs are defined. The 
AUTOSAR partnership specified a meta-
model, described in the configuration 
language XML. Hence XML configuration 
files can be used for the entire system 
specification. These XMLconfiguration files 
are used as input for code generation 
tools, tools for creating object code or just 
as uniform specification exchange format. 
Additionally, development tools like bus 
analyzer, function modeling tools, etc. will 
support AUTOSAR exchange format in 
midterm. 
The Run Time Environment (RTE) is the 
realization of the VFB for a specific ECU. 
The RTE realizes the communication 
between SWCs within an ECU (intra-
communication) and among different 
ECUs (inter-communication). SW-Cs with 
their ports and interfaces are mapped to 
certain ECUs after the VFB system design 
step. XML configuration files are used to 
describe this mapping. After appropriate 
system configuration XML configuration 
files are fed to an RTE generator 
producing code (e.g. source code files 
rte.c, rte.h, etc.) specific to an ECU. In this 
way the RTE layer encapsulates the whole 
communication mechanism for SW-Cs by 
providing a standardizes API to application 
functions and simultaneously being 
independent from actual underlying 
hardware.  
 
2.1 System layer model 

A technical overview on AUTOSAR is 
given in [3]. This subsection focuses on 
the architecture within an ECU. Figure 2 

depicts the software layer architecture. A 

 

Figure 2: Software layer model [4] 
color schema helps Figure 2: Software 
Layer Model [4] in distinguishing different 
layers. The application layer resides on 
top of the layer model. This is abstracted 
through the RTE from the underlying 
hardware (including ECU). The RTE layer 
is generated completely by tools based on 
the provided XML-schema. Developing 
such tools is not in the focus of 
AUTOSAR, but they play a key role. Below 
RTE all BSW-modules are divided into 
several layers. Each layer abstracts its 
adjacent underlying layers a certain 
degree more from real hardware. The 
service layer (blue) comprises system 
services (e.g. Operating System (OS)), 
memory services (e.g. Non Volatile RAM 
(NVRAM)) and communication services 
(like bus communication). An example of 
such abstraction would be the 
communication service layer, which 
abstracts from communication hardware. 
The network system (LIN, CAN, FlexRay) 
is still not known. The hardware 
abstraction layer, on the other side, 
supports interfaces, providing 
independence from hardware driver 
software and therefore from real 
microcontroller. On board device 
interfaces, memory hardware, I-O drivers 
and communication hardware modules are 
distinguished in the layer next to the 
microcontroller. The communication 
hardware abstraction layer hides the used 
network system. Through this module the 
network system type is chosen. For 
example a CAN interface module is used, 
if signals shall be transferred on CAN. 
Apart from these hardware abstraction 
blocks two more (green) BSW modules 
appear. Input/ Output (IO) hardware 
abstraction layer hides controller specific 
properties of input and output ports. 
Interfaces are provided to access data 
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from ECU inputs or to put data to 
hardware output ports with physical 
values. The kinds of ports (Analog Digital 
Converter (ADC), Pulse Width Modulated 
(PWM), or digital input/output) shall not be 
of relevance to upper layers. The 
rightmost side of Figure 2 shows another 
BSW module Complex Device Driver 
(CDD). CDD allows direct access of RTE 
to peripheral hardware. This module is 
used for very time critical applications, 
which can be speed up through directly 
accessing peripheral hardware. Further 
supplier can protect their IP within a CDD. 
 
3 COM stack 

This section gives an elaborated overview 
of the COM stack. For simplicity only the 
COM stack for CAN communication is 
sketched. Figure 3 gives more insight into 
the layered architecture of COM related 
modules. The service layer contains 
several modules. Subsection 3.1 gives an 
overview of AUTOSAR COM, subsection 
3.2 gives details on PDUrouter, subsection 
3.3 gives an overview of CAN transport 
protocol (CAN TP), subsection 3.4 and 
subsection 3.5 summarize the task of CAN 
Interface and of CAN Driver modules.  
 
3.1 COM 

AUTOSAR COM is based on the OSEK 
COM specification [5]. The COM service 
layer provides a uniform interface to the 
CAN network. Protocol and message 
properties are hidden from the application. 
COM provides a microcontroller and ECU 
hardware independent interface to 
application. COM transfers signals to and 
from the RTE. Signals are packed into and 
from I-PDUs. Dependent on the service to 
be used, signals are directly passed to 
transport protocol modules or to the PDU 
Router. External signal exchange between 
SW-Cs on different ECUs are routed 
through RTE via COM to PDU-Router and 
then to a bus system as configured during 
system design. COM is able to work as a 
signal gateway, without inclusion of higher 
layers. Attributes are attached to signals, 
which are managed and evaluated within 
COM. Network management is included in 

the communication services layer apart 

 

Figure 3: Communication stack layer 
model [4] 
from AUTOSAR COM. Network 
management provides uniform services to 
get and set modes of networks nodes. 
 
3.2 PDU-Router 

The PDU-Router [6] provides services for 
routing I-PDUs between the following 
modules:  
 
• communication interface modules (e.g. 

LIN, CAN and FlexRay) 
• Transport protocol modules (e.g. CAN 

TP, FlexRay TP)  
• AUTOSAR Diagnostic Communication 

Manager (DCM) and Transport 
Protocol (TP) modules (e.g. CAN TP, 
FlexRay TP) 

• AUTOSAR COM and communication 
interface modules (e.g. LIN, CAN or 
FlexRay) or I-PDU Multiplexer  

• I-PDU Multiplexer and communication 
interface modules (e.g. LIN, CAN or 
FlexRay) 

 
The PDU router provides an API to the 
above layers (e.g. COM) and an API for 
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modules below the PDU router (e.g. CAN 
interface). PDUs are identified by static 
PDU IDs. The routing operation of the 
PDU router is controlled by routing tables, 
which contain routing attributes for each 
PDU, e.g.: PDU Id and destination 
address. The PDU router does not modify 
I-PDUs, it simply forwards the I-PDU to the 
destination module. A detailed sketch of 
the PDU router structure is given in Figure 
4. The PDU-R module is split into two 
parts: 
 
• The PDU Routing tables 
• The PDU Router engine 
 
The PDU router engine performs routing 
actions according to the routing tables. 
Two translations can be distinguished: up 
(to higher layer) and down translation. In 
order to provide access to the DCM for the 
activation of the bootloader, the PDU 
router engine provides a minimum routing 
capability. Specific PDUs can hence be 
routed correctly to DCM in case the 
configurable PDU router tables are 
corrupted (e.g. by a previous flash 
operation). 

 

Figure 4: PDU router structure [6] 
3.3 CAN-TP 

CAN Transport Protocol (CAN-TP) is 
located between PDU router and CAN 
Interface (see Figure 3). CAN TP provides 
services for [7]: 
 
• Segmentation of data in transmit 

direction 
• Reassembling of data in receive 

direction 
• Control of data flow 

• Detection of errors in segmentation 
sessions 

 
The main purpose of CAN TP is to 
segment and reassemble CAN I-PDUs 
longer than eight bytes (data flow control). 
Two routing paths exist between CAN 
interface and PDU router engine (see 
Figure 4). The PDU router determines 
whether a transport protocol is to be used 
or not. The PDU router can handle 
different communication protocols for 
COM and DCM I-PDUs. COM I-PDUs are 
generally routed directly to CAN interface, 
whereas DCM I-PDUs are routed via CAN 
TP, in a CAN network system. Diagnostic 
information [8, 9, 10] exceeds eight byte 
data fields, which makes data flow control 
necessary.  
 
3.4 CAN interface 

The CAN Hardware Interface provides 
uniform mechanisms to access a CAN bus 
channel regardless of its location (internal/ 
external), i.e. upper layers do not 
differentiate, whether a CAN controller is 
connected via an SPI bus or whether an 
on-chip CAN controller is used. CAN-
Interface abstracts from the location of 
CAN controllers (on-chip/on-board), the 
ECU hardware layout and the number of 
CAN drivers. The upper  layer addresses 
CAN channels rather than CAN 
controllers.  
 
3.5 CAN driver 

The CAN Driver provides services for 
initiating transmissions and callback 
functions for notifying receive events, 
independent from the CAN controller 
hardware.  
 
3.6 CAN transceiver driver 

The CAN Transceiver driver controls the 
external CAN transceiver hardware. It 
controls wake-up and sleep of the CAN 
bus. It observes the bus line and provides 
physical network layer diagnostic 
information (short circuit, open line, etc.) to 
the upper layers.  
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4 Example application 

In this section the configuration and 
integration process of a small mirror demo 
application is illustrated. First the demo 
application is split into SW-Cs: 
SensorInputProcessing, 
MirrorAdjustManager, 
ActuatorOutputProcessing. These SW-Cs 
communicate with each other over ports 
and their assigned interfaces. Figure 5 
depicts the top level design. A small mirror 
control application serves as a 
demonstration. The example system 
consists of three SW-Cs. The left SW-C 
(SensorInputProcessing) reads in sensor 
information provided by the car driver via 
joystick movements. The right SW-C 
(ActuatorOutput- Processing) sends 
steering commands to actuators. The 
MirroAdjustManager SW-C coordinates 
incoming requests and calculates 
corresponding move commands. At this 
step sensor- and actuator component 
depends on logic signals, like: MoveX, 
MoveY, Stop, etc. Now ports, interfaces 
and data elements are defined. Table 1 
shows an extract of a software component 
XML description. For simplicity a table is 
used instead of copying XMLcode. Table 1 
is related to the leftmost SW-C of Figure 5. 
The name of the atomic SW-C is defined 
in the first row. The component contains a 
providing port (p-port) PP_Req_Mirror, 
which uses a sender-receiver (S/R) 
interface of type IF_MirrorMoveXY. The 
communication type sender-receiver 
involves transmission and reception of 
signals for atomic data elements. An S/R 
interface may contain multiple data 
elements. Here DT_Req_MoveX and 
DT_Req_MoveY are two data elements 

defined within the interface 
IF_MirrorMoveXY. These data elements 

are written by the pport. A require port (r-
port) represents a read data element  
operation, as can be seen at the rightmost 
SW-C in Figure 5. Graphical tools will be 
(soon) available to configure SW-Cs by 
drawing them as they are sketched in 
Figure 5. These tools support import and 
export of XML code, in order to exchange 
configurations with other tools. In the next 
development phase SW-Cs are mapped to 
hardware (ECUs), which represents 
mapping to a certain system architecture 
design. Tools also assist in this step. A 
manual way is, to map the SWCs by 
means of AUTOSAR XML code. After this 
step intra ECU and inter ECU signals are 
distinguished for the first time. For 
example: 
If SensorInputProcessing is mapped to 
ECU1 and the right SW-Cs MirrorAdjust- 
Manager, ActuatorOutputProcessing are 
located on ECU2, the ports 
PP_Req_Mirror and RP_Req_Mirror 
exchange their data elements between 
ECUs. Data elements between the ports 
PP_cmd_Mirror and RP_cmd_Mirror are 
intra ECU signals. In case no special 
routing is necessary, nothing is to be done 
for intra-ECU signals. All intra ECU traffic 
of SWCs is managed by RTE. Inter ECU 
signals are communicated to external 
devices. They are passed from RTE to 
COM and vice versa. COM packs signals 
into I-PDUs, which contain one ore more 
signals. Signals within a COM I-PDU must 
occupy contiguous bits. Signals in COM 
layer need a reference to data elements of 
SW-C ports. Data elements of SW-C ports 
has to be mapped to I-PDU signals. 
Through this mechanism data elements 
from SW-C ports are linked to external 
networks (a CAN network in this case). 
While transmitting the PDU-Router reads 
the I-PDUs and routes them according to 
the routing table to lower layers. In case of 
reception PDU-R transfers I-PDUs without 
modifications to upper layers. 

Parameter Settings 
Atomic-Software-
Component-Type 

CT_SensorInput-
ProcessingType 

P-Port-Prototype PP_Req_Mirror 
Sender-Receiver-
Interface-Type 

IF_MirrorMoveXY 

Data-Element-
Prototype 

DT_Req_MoveX 
DT_Req_MoveY 

Table 1: SensorInputProcessing 
configuration parameters (extract) 
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Figure 5: SW-Cs of demo application 
5 Conclusion 

The AUTOSAR standard aims to achieve 
standardized interfaces between software 
application functions and from them to 
basic software modules within ECUs 
(Electronic Control Unit). Software 
modules designed this way, are 
independent from their underlying 
hardware. Software modules may be 
exchangeable due to a standardized API 
to other modules or to application 
functions. In future automotive system 
architectures the number of ECUs may be 
reduced, because of the ability to integrate 
SW-Cs on a virtual function bus in a quite 
early development phase. The increasing 
functional scope with the growing 
complexity may be kept feasible in future 
systems. The architectural concept of 
AUTOSAR is based on a VFB. Per ECU 
the VFB is instantiated as an RTE layer. 
RTE encapsulates the whole 
communication infrastructure for SW-Cs 
which build the application functions. BSW 
modules are standardized for 
configuration. Also BSW module APIs are 
part of the AUTOSAR standardization, 
which yields exchangeable BSW modules 
(e.g. from different suppliers). Each layer 
abstracts gradually its underlying layer 
from hardware. Data elements of SW-Cs 
are identified as internal or external 
signals when they are mapped to certain 
ECUs according to a system network 
architecture. External signals are 
transferred through RTE to COM, where 
they are packed/ unpacked into/ from I-
PDUs. User data is put into (or get from) 
buffers of the PDU-router, which routes 
the packed I-PDUs according to its routing 
table. A default routing table exists for 
diagnostic data exchange, which serves 
as backup in case a prior program 
sequence destroyed the routing table. The 

router selects to (or from) which network 
interface data is transferred. In case of 
CAN the I-PDUs are put (or get) to the 
CAN Interface, which transfers them finally 
to the CAN driver and from there to the 
CAN controller. 
 
6 Acronyms, abbreviations 

ADC   Analog Digital Converter 
BSW   Basic Software 
CAN-TP  CAN Transport Protocol 
CDD   Complex Device Driver 
DCM   Diagnostic Communication 

Manager 
NVRAM  Non Volatile RAM 
OEM  Original Equipment 

Manufacturer 
PWM   Pulse Width Modulated 
RTE   Run Time Environment 
OS   Operating System 
TP   Transport Protocol 
VFB   Virtual Function Bus 
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