
iCC 2006 CAN in Automation

 06-12

CAN configuration within Autosar

 Dr.-Ing. R. Machauer, Bosch Engineering GmbH

AUTOSAR (AUTomotive Open System ARchitecture) aims to standardize interfaces
between software application functions and further between application functions and
basic software modules in ECUs (Electronic Control Unit). Independence from
underlying hardware and this modular software design allows exchangeability of
software functionalities amongst ECUs. The integration of functions from different
suppliers is established through a virtual function bus. The mapping to a certain
network topology (or to ECUs) is carried out after that step. In this paper configuration
of a CAN stack and related basic software modules in system architecture
development according to AUTOSAR is shown.

1 Introduction

Nowadays in automotive environment E/E
systems comprise of many ECUs, which
are connected via different bus systems
(CAN, LIN, FlexRay, MOST, proprietary
serial lines, etc.). In luxury cars the
number of ECUs may even reach 70. They
are classified into several system domains
like powertrain domain, chassis domain,
body domain, safety, infotainment, etc.
Inter domain communication is established
through gateways. The functional behavior
of an ECU is specified by the Original
Equipment Manufacturer (OEM), and
implemented by the hardware supplier.
Each ECU implements certain application
functions, which interact in some way with
other ECUs. It is a common approach, that
ECU hardware manufacturers also supply
application software with their ECU. With
this approach the system integration
medium is more or less the bus system
the ECU is connected to. With such a
large number of ECUs and interacting
functions error detection within a system is
a challenge for the system integrator. The
driving forces for AUTOSAR are [1]:
• Exchangeability of functional modules

(multiple suppliers)
• Manage increasing E/E complexity

associated with growth in functional
scope, which yields to improved quality
and reliability of E/E systems

• Higher flexibility for product
modification, upgrade and update

• Enable detection of errors in early
design phases

The AUTOSAR partnership was
established in summer 2003 [1]. First
release of AUTOSAR specification was
published in mid 2005. A second release
followed during the first quarter of 2006
[2]. In chapter 2 a short technical overview
of the AUTOSAR concept and its layer
model is given. In chapter 3 the Basic
Software (BSW) modules of
communication software(COM stack) and
the underlying layers are discussed in
detail.

2 AUTOSAR concept

The AUTOSAR software architecture
provides new design choices to software
engineers building distributed,
communication software systems. A key
aspect of this architecture is a design
abstraction called the AUTOSAR Virtual
Function Bus (VFB) (rf. Figure 1). VFB
allows the design of software systems
without reference to target hardware.
Hence during the design process the
mapping to a specific hardware is shifted
to later phase. The VFB is the collection of
all communication mechanisms (plus
some interfaces to the basic software) on
an abstract level.
An AUTOSAR system is build from of a
set of software components (SW-Cs).
Interaction among SW-Cs is accomplished
only through statically defined ports. Each
port is assigned an interface type, defining
the “way” of communication. Two
communication paradigms are provided for
SW-C ports, called sender-receiver and
client-server communication; Sender-

iCC 2006 CAN in Automation

06-13

receiver provides message passing,

Figure 1: Virtual Function Bus [3]
whereas client-server communication
invokes a service function call. VFB allows
an early (virtual) integration of SWCs as
soon as the communication mechanism
amongst SW-Cs are defined. The
AUTOSAR partnership specified a meta-
model, described in the configuration
language XML. Hence XML configuration
files can be used for the entire system
specification. These XMLconfiguration files
are used as input for code generation
tools, tools for creating object code or just
as uniform specification exchange format.
Additionally, development tools like bus
analyzer, function modeling tools, etc. will
support AUTOSAR exchange format in
midterm.
The Run Time Environment (RTE) is the
realization of the VFB for a specific ECU.
The RTE realizes the communication
between SWCs within an ECU (intra-
communication) and among different
ECUs (inter-communication). SW-Cs with
their ports and interfaces are mapped to
certain ECUs after the VFB system design
step. XML configuration files are used to
describe this mapping. After appropriate
system configuration XML configuration
files are fed to an RTE generator
producing code (e.g. source code files
rte.c, rte.h, etc.) specific to an ECU. In this
way the RTE layer encapsulates the whole
communication mechanism for SW-Cs by
providing a standardizes API to application
functions and simultaneously being
independent from actual underlying
hardware.

2.1 System layer model

A technical overview on AUTOSAR is
given in [3]. This subsection focuses on
the architecture within an ECU. Figure 2

depicts the software layer architecture. A

Figure 2: Software layer model [4]
color schema helps Figure 2: Software
Layer Model [4] in distinguishing different
layers. The application layer resides on
top of the layer model. This is abstracted
through the RTE from the underlying
hardware (including ECU). The RTE layer
is generated completely by tools based on
the provided XML-schema. Developing
such tools is not in the focus of
AUTOSAR, but they play a key role. Below
RTE all BSW-modules are divided into
several layers. Each layer abstracts its
adjacent underlying layers a certain
degree more from real hardware. The
service layer (blue) comprises system
services (e.g. Operating System (OS)),
memory services (e.g. Non Volatile RAM
(NVRAM)) and communication services
(like bus communication). An example of
such abstraction would be the
communication service layer, which
abstracts from communication hardware.
The network system (LIN, CAN, FlexRay)
is still not known. The hardware
abstraction layer, on the other side,
supports interfaces, providing
independence from hardware driver
software and therefore from real
microcontroller. On board device
interfaces, memory hardware, I-O drivers
and communication hardware modules are
distinguished in the layer next to the
microcontroller. The communication
hardware abstraction layer hides the used
network system. Through this module the
network system type is chosen. For
example a CAN interface module is used,
if signals shall be transferred on CAN.
Apart from these hardware abstraction
blocks two more (green) BSW modules
appear. Input/ Output (IO) hardware
abstraction layer hides controller specific
properties of input and output ports.
Interfaces are provided to access data

iCC 2006 CAN in Automation

 06-14

from ECU inputs or to put data to
hardware output ports with physical
values. The kinds of ports (Analog Digital
Converter (ADC), Pulse Width Modulated
(PWM), or digital input/output) shall not be
of relevance to upper layers. The
rightmost side of Figure 2 shows another
BSW module Complex Device Driver
(CDD). CDD allows direct access of RTE
to peripheral hardware. This module is
used for very time critical applications,
which can be speed up through directly
accessing peripheral hardware. Further
supplier can protect their IP within a CDD.

3 COM stack

This section gives an elaborated overview
of the COM stack. For simplicity only the
COM stack for CAN communication is
sketched. Figure 3 gives more insight into
the layered architecture of COM related
modules. The service layer contains
several modules. Subsection 3.1 gives an
overview of AUTOSAR COM, subsection
3.2 gives details on PDUrouter, subsection
3.3 gives an overview of CAN transport
protocol (CAN TP), subsection 3.4 and
subsection 3.5 summarize the task of CAN
Interface and of CAN Driver modules.

3.1 COM

AUTOSAR COM is based on the OSEK
COM specification [5]. The COM service
layer provides a uniform interface to the
CAN network. Protocol and message
properties are hidden from the application.
COM provides a microcontroller and ECU
hardware independent interface to
application. COM transfers signals to and
from the RTE. Signals are packed into and
from I-PDUs. Dependent on the service to
be used, signals are directly passed to
transport protocol modules or to the PDU
Router. External signal exchange between
SW-Cs on different ECUs are routed
through RTE via COM to PDU-Router and
then to a bus system as configured during
system design. COM is able to work as a
signal gateway, without inclusion of higher
layers. Attributes are attached to signals,
which are managed and evaluated within
COM. Network management is included in

the communication services layer apart

Figure 3: Communication stack layer
model [4]
from AUTOSAR COM. Network
management provides uniform services to
get and set modes of networks nodes.

3.2 PDU-Router

The PDU-Router [6] provides services for
routing I-PDUs between the following
modules:

• communication interface modules (e.g.

LIN, CAN and FlexRay)
• Transport protocol modules (e.g. CAN

TP, FlexRay TP)
• AUTOSAR Diagnostic Communication

Manager (DCM) and Transport
Protocol (TP) modules (e.g. CAN TP,
FlexRay TP)

• AUTOSAR COM and communication
interface modules (e.g. LIN, CAN or
FlexRay) or I-PDU Multiplexer

• I-PDU Multiplexer and communication
interface modules (e.g. LIN, CAN or
FlexRay)

The PDU router provides an API to the
above layers (e.g. COM) and an API for

iCC 2006 CAN in Automation

06-15

modules below the PDU router (e.g. CAN
interface). PDUs are identified by static
PDU IDs. The routing operation of the
PDU router is controlled by routing tables,
which contain routing attributes for each
PDU, e.g.: PDU Id and destination
address. The PDU router does not modify
I-PDUs, it simply forwards the I-PDU to the
destination module. A detailed sketch of
the PDU router structure is given in Figure
4. The PDU-R module is split into two
parts:

• The PDU Routing tables
• The PDU Router engine

The PDU router engine performs routing
actions according to the routing tables.
Two translations can be distinguished: up
(to higher layer) and down translation. In
order to provide access to the DCM for the
activation of the bootloader, the PDU
router engine provides a minimum routing
capability. Specific PDUs can hence be
routed correctly to DCM in case the
configurable PDU router tables are
corrupted (e.g. by a previous flash
operation).

Figure 4: PDU router structure [6]
3.3 CAN-TP

CAN Transport Protocol (CAN-TP) is
located between PDU router and CAN
Interface (see Figure 3). CAN TP provides
services for [7]:

• Segmentation of data in transmit

direction
• Reassembling of data in receive

direction
• Control of data flow

• Detection of errors in segmentation
sessions

The main purpose of CAN TP is to
segment and reassemble CAN I-PDUs
longer than eight bytes (data flow control).
Two routing paths exist between CAN
interface and PDU router engine (see
Figure 4). The PDU router determines
whether a transport protocol is to be used
or not. The PDU router can handle
different communication protocols for
COM and DCM I-PDUs. COM I-PDUs are
generally routed directly to CAN interface,
whereas DCM I-PDUs are routed via CAN
TP, in a CAN network system. Diagnostic
information [8, 9, 10] exceeds eight byte
data fields, which makes data flow control
necessary.

3.4 CAN interface

The CAN Hardware Interface provides
uniform mechanisms to access a CAN bus
channel regardless of its location (internal/
external), i.e. upper layers do not
differentiate, whether a CAN controller is
connected via an SPI bus or whether an
on-chip CAN controller is used. CAN-
Interface abstracts from the location of
CAN controllers (on-chip/on-board), the
ECU hardware layout and the number of
CAN drivers. The upper layer addresses
CAN channels rather than CAN
controllers.

3.5 CAN driver

The CAN Driver provides services for
initiating transmissions and callback
functions for notifying receive events,
independent from the CAN controller
hardware.

3.6 CAN transceiver driver

The CAN Transceiver driver controls the
external CAN transceiver hardware. It
controls wake-up and sleep of the CAN
bus. It observes the bus line and provides
physical network layer diagnostic
information (short circuit, open line, etc.) to
the upper layers.

iCC 2006 CAN in Automation

 06-16

4 Example application

In this section the configuration and
integration process of a small mirror demo
application is illustrated. First the demo
application is split into SW-Cs:
SensorInputProcessing,
MirrorAdjustManager,
ActuatorOutputProcessing. These SW-Cs
communicate with each other over ports
and their assigned interfaces. Figure 5
depicts the top level design. A small mirror
control application serves as a
demonstration. The example system
consists of three SW-Cs. The left SW-C
(SensorInputProcessing) reads in sensor
information provided by the car driver via
joystick movements. The right SW-C
(ActuatorOutput- Processing) sends
steering commands to actuators. The
MirroAdjustManager SW-C coordinates
incoming requests and calculates
corresponding move commands. At this
step sensor- and actuator component
depends on logic signals, like: MoveX,
MoveY, Stop, etc. Now ports, interfaces
and data elements are defined. Table 1
shows an extract of a software component
XML description. For simplicity a table is
used instead of copying XMLcode. Table 1
is related to the leftmost SW-C of Figure 5.
The name of the atomic SW-C is defined
in the first row. The component contains a
providing port (p-port) PP_Req_Mirror,
which uses a sender-receiver (S/R)
interface of type IF_MirrorMoveXY. The
communication type sender-receiver
involves transmission and reception of
signals for atomic data elements. An S/R
interface may contain multiple data
elements. Here DT_Req_MoveX and
DT_Req_MoveY are two data elements

defined within the interface
IF_MirrorMoveXY. These data elements

are written by the pport. A require port (r-
port) represents a read data element
operation, as can be seen at the rightmost
SW-C in Figure 5. Graphical tools will be
(soon) available to configure SW-Cs by
drawing them as they are sketched in
Figure 5. These tools support import and
export of XML code, in order to exchange
configurations with other tools. In the next
development phase SW-Cs are mapped to
hardware (ECUs), which represents
mapping to a certain system architecture
design. Tools also assist in this step. A
manual way is, to map the SWCs by
means of AUTOSAR XML code. After this
step intra ECU and inter ECU signals are
distinguished for the first time. For
example:
If SensorInputProcessing is mapped to
ECU1 and the right SW-Cs MirrorAdjust-
Manager, ActuatorOutputProcessing are
located on ECU2, the ports
PP_Req_Mirror and RP_Req_Mirror
exchange their data elements between
ECUs. Data elements between the ports
PP_cmd_Mirror and RP_cmd_Mirror are
intra ECU signals. In case no special
routing is necessary, nothing is to be done
for intra-ECU signals. All intra ECU traffic
of SWCs is managed by RTE. Inter ECU
signals are communicated to external
devices. They are passed from RTE to
COM and vice versa. COM packs signals
into I-PDUs, which contain one ore more
signals. Signals within a COM I-PDU must
occupy contiguous bits. Signals in COM
layer need a reference to data elements of
SW-C ports. Data elements of SW-C ports
has to be mapped to I-PDU signals.
Through this mechanism data elements
from SW-C ports are linked to external
networks (a CAN network in this case).
While transmitting the PDU-Router reads
the I-PDUs and routes them according to
the routing table to lower layers. In case of
reception PDU-R transfers I-PDUs without
modifications to upper layers.

Parameter Settings
Atomic-Software-
Component-Type

CT_SensorInput-
ProcessingType

P-Port-Prototype PP_Req_Mirror
Sender-Receiver-
Interface-Type

IF_MirrorMoveXY

Data-Element-
Prototype

DT_Req_MoveX
DT_Req_MoveY

Table 1: SensorInputProcessing
configuration parameters (extract)

iCC 2006 CAN in Automation

06-17

Figure 5: SW-Cs of demo application
5 Conclusion

The AUTOSAR standard aims to achieve
standardized interfaces between software
application functions and from them to
basic software modules within ECUs
(Electronic Control Unit). Software
modules designed this way, are
independent from their underlying
hardware. Software modules may be
exchangeable due to a standardized API
to other modules or to application
functions. In future automotive system
architectures the number of ECUs may be
reduced, because of the ability to integrate
SW-Cs on a virtual function bus in a quite
early development phase. The increasing
functional scope with the growing
complexity may be kept feasible in future
systems. The architectural concept of
AUTOSAR is based on a VFB. Per ECU
the VFB is instantiated as an RTE layer.
RTE encapsulates the whole
communication infrastructure for SW-Cs
which build the application functions. BSW
modules are standardized for
configuration. Also BSW module APIs are
part of the AUTOSAR standardization,
which yields exchangeable BSW modules
(e.g. from different suppliers). Each layer
abstracts gradually its underlying layer
from hardware. Data elements of SW-Cs
are identified as internal or external
signals when they are mapped to certain
ECUs according to a system network
architecture. External signals are
transferred through RTE to COM, where
they are packed/ unpacked into/ from I-
PDUs. User data is put into (or get from)
buffers of the PDU-router, which routes
the packed I-PDUs according to its routing
table. A default routing table exists for
diagnostic data exchange, which serves
as backup in case a prior program
sequence destroyed the routing table. The

router selects to (or from) which network
interface data is transferred. In case of
CAN the I-PDUs are put (or get) to the
CAN Interface, which transfers them finally
to the CAN driver and from there to the
CAN controller.

6 Acronyms, abbreviations

ADC Analog Digital Converter
BSW Basic Software
CAN-TP CAN Transport Protocol
CDD Complex Device Driver
DCM Diagnostic Communication

Manager
NVRAM Non Volatile RAM
OEM Original Equipment

Manufacturer
PWM Pulse Width Modulated
RTE Run Time Environment
OS Operating System
TP Transport Protocol
VFB Virtual Function Bus

References

[1] H. Heinecke, K.-P. Schnelle, H. Fennel,J.
Bortolazzi, L. Lundh, J. Leflour, J.-L.Mate, K.
Nishikawa, and T. Scharnhorst, AUTomotive
Open System ARchitecture -an industry-wide
initiative to manage the complexity of
emerging automotive e/earchitectures.
Convergence 2004, October 18-20 2004.

[2] AUTOSAR. AUTOSAR partnership
homepage: www.autosar.org.

[3] AUTOSAR. Technical Overview, 2.0.0
edition, March 2006.

[4] AUTOSAR. Layered Software Architecture,
2.0.0 edition, March 2006.

[5] OSEK. OSEK/ VDX Communication, 3.0.1
edition, January 2003.

[6] AUTOSAR. Specification of PDUR, 2.0.0
edition, April 2006.

[7] AUTOSAR. Specification of CAN Transport
Layer, 2.0.0 edition, April 2006.

[8] ISO 15765-2 (2004-10-12), Road vehicles -
Diagnostic on Controller Area Networks
(CAN) - Part2: Network layer services.

[9] ISO 15765-3 (2004-10-06), Road vehicles -
Diagnostic on Controller Area Networks
(CAN) - Part3: Implementation of Diagnostic
Services.

[10] ISO 15765-4 (2005-01-04), Road vehicles -
Diagnostic on Controller Area Networks
(CAN) - Part4: Requirements for emission-
related systems.

