
iCC 2006 CAN in Automation

06-1

Rapid prototyping for CANopen system development

Heinz-Jürgen Oertel, Rüdiger Härtel, Torsten Gedenk

port GmbH

The development of simple CANopen devices up to complex systems requires exact
planning and preparation. Planning and concrete realization depend each other to the
extent that the selection of communication services has an effect on the performance of
the assigned hardware and vice versa. The use of a prototype system enables early
recognition and avoidance of bottlenecks or errors in the system. This leads to shorter
development times by avoiding erroneous development and undiscovered problems in
the network design.

 This article shows different approaches to construction, use and feasibility of prototype
systems. Attention is drawn to to the scalability of the system and reuse of code from
the prototypes for the target platform. In particular the codevelopment of Master/Slave
applications are taken into consideration.

1 Introduction

The development of a CANopen system
consisting various of CANopen devices
communicating with each other is a
complex task. Frequently the developer
only knows the requirements for the
overall system but the requirements for
every single component or the type of
component (Master/Slave and their
functions in the system) are not clearly
defined. In many cases the number of
CANopen devices or the allocation of
functions to the devices are not specified
at the beginning of the development.
Additionally the target hardware is not
available at the beginning of the
development or its development is part of
the whole project. This must be
considered a critical issue especially for
the development of master applications.
By using prototypes for the slave devices
the communication connections and
network traffic in the network can be
estimated. Furthermore it allows for the
implementation of the corresponding
functions on the master and for testing
them without great effort. Thereby one
discovers that changes at the slaves
cause changes at the master and vice
versa. This influences the communication
services, which again have an effect on
the bus load or on the required resources
of the slaves. Out of this several

scenarios arise that can be developed
prototypically and of course be tested.
This paper addresses the mentioned
problems and shows ways to solve them. In
addition to presenting different approaches a
framework for Rapid Prototyping of CANopen
Systems is presented and explained. The
topics elaborated on include
• rapid development,
• scalability of the system,
• re-use of code and
• documentation of the components and

the overall system.

2 Prototypes in general

A prototype is a first outline of a system or
part of a system. Prototypes are made to
examine a function or a given behavior in
detail. There are two types in software
development:
• Throwaway prototypes
• reusable prototypes

can be distinguished.
The throwaway prototype is mostly used to
collect system requirements. The reusable
prototype can be subdivided as follows:
• Explorative prototyping
• Evolutionary Prototyping
• Experimental Prototyping

iCC 2006 CAN in Automation

06-2

The methodology of the prototypes is
already used in different parts of software
development and is found also in
programming paradigms like Extreme
Programming (XP).
This article uses the term of prototyping in
the sense of the evolutionary and
experimental prototyping, i.e. for the
gradual implementation of system
functions, detection of problems and
construction of an operating prototype as
proof of the desired customer functionality.
The prototype already contains the basic
functionalities which are developed further
into the end product.
A simulation is another attempt to get new
knowledge of a system to be developed
utilizing complex software like
Matlab/Simulink. The simulation is carried
out by means of a simulation model which
only implements the main characteristics
of the real system. The results of the
simulation are strongly dependent on the
predefined input quantities. Simulation
tools use simulation languages of their
own, such as Tcl/Tk, Python, CAPL and
others.
With the prototypes a practical attempt for
setting up CANopen systems and also
individual CANopen nodes exists. The
main differences in prototypes for the
simulation are:
• use of the CANopen library that is

being used for the "real" development
• incremental integration of the

prototypes into the target platform and
into the CANopen network

• running system in an early stage of
development

• process simulation

3 Prototypes for CANopen devices

The use of Prototyping in the software
development is supported by adequate
tools and a software environment. Tools
allow for the addition or removal of
functionality in an easy and reproducible
manner. The software environment
permits compiling and testing of the
prototype.

For a CANopen device the CANopen object
directory and the CAN connection (CAN
driver) are the central elements. The graphic
tool, CANopen design tool, generates the
object directory by means of databases. The
object directory contains the CANopen
communications profile (DS301, DS302) and
device profiles (DS401, DS402 ...). The
result is C code, an EDS file and a detailed
documentation of the objects used (Fig. 1)

Figure 1: Principle of generating a
CANopen
CANopen libraries are very extensivy
scalable in their functionality by using
compiler switches. The compiler switches
are set depending on the objects used in the
project which diminishes problems in the
configuration of the CANopen library.
The software development starts before the
target hardware is available. By using a
hardware abstraction layer (HAL) the
software can be developed on any arbitrary
platform (Fig. 2).

Figure 2: Hardware Abstraction Layer

iCC 2006 CAN in Automation

06-3

he hardware abstraction layer is an
application programming interface (API)
which contains all the necessary functions
of the target system. When changing to
another platform the function contents are
adapted to the circumstances of the other
platform. Little effort is needed to change
between platforms and this can be carried
out at any time. A mixed network setup is
possible with prototypes running on the
target hardware and other devices of the
network on the PC hardware.

4 CAN abstraction layer

The use of a standard PC permits simple
creation of CANopen prototypes. The fault
diagnosis can be carried out with the
debugger without having to accept a
limitation (number of break points) or
waiting times for loading the program into
flash or EEPROM. Different solutions for
the hardware abstraction layer on the PC
exist:
Virtual Network
A virtual network is created in the memory
of the PC. The CANopen prototypes
communicate via Shared Memory or other
IPC mechanisms with each other.
One CAN-Interface per prototype
Prototypes access an existing CAN
interface board (USB-CAN Dongle, PCI
CAN card) directly. For each prototype a
CAN interface is needed.
For the prototype an old PC is sufficient
which is equipped with an AT or PCI CAN
interface. The 1 diskettes Linux, fli4l
project, equipped with the can4linux driver
can be used. The CANopen software is
then transmitted and started by FTP or
telnet into the RAM of the PC.

5 Virtual network

The virtual network is created in the
memory of the PC. TCP/IP was selected
as an IPC mechanism. The TCP/IP server
is a separate program and represents the
CAN network. The CANopen prototypes
are clients and connect to the virtual CAN
network using of the TCP/IP server. As a
result it becomes irrelevant which
operating system is used. The prototypes

can be distributed on many different PC's and
started from there. If the broadcasting
mechanism of the UDP protocol is utilized the
server isn't needed at all.

Figure 3: CAN HAL as multiprocess driver
Disturbing influences due to CAN bus physics
can be ignored at first. If it is necessary to
also test these cases they can be generated
by the TCP/IP server. Moreover, the server
can calculate the bus load which is reached
at a desired bit rate. Conclusions can hereby
be made on the distribution of the device
functions in the network. It has to be taken
into account that no bus arbitration takes
place in the virtual network. The CAN
telegrams in the virtual network are
distributed and processed to all prototypes in
chronological order through the TCP/IP
server.
Diagnosis and configuration tools can be
applied by using the same HAL. The virtual
network can also be connected through the
TCP/IP server directly to a CAN network.
Diagnosis and configuration tools then can be
used in the network without any modification
(Fig. 5). The prototypes in the virtual network
appear as real devices.

iCC 2006 CAN in Automation

06-4

6 One CAN interface per prototype

This approach is the 1:1 copy of a device
as a prototype on a PC (Fig. 4). Large
networks cannot be made on an individual
PC. The number of prototypes which can
be started at the same time on a PC is
restricted by the number of CAN interfaces
in the PC.

Figure 4: CAN HAL separate CAN
interfaces for each prototype
The use of a PC for the prototype isn't
mandatory. The prototype can therefore
be created on every available platform.
development boards are also a good
choice for building prototypes. When
small networks are to be developed all
devices can be executed as prototypes on
Development boards.

7 Incremental integration

During of the development, the prototypes
can be exchanged for the target platform
in the virtual network. Depending on the
implementation of the hardware
abstraction layer the exchange for the
target platform occurs by setting other
compiler switches or exchanging
directories. A gradually comprehensible
integration is the outcome of this
procedure.

Figure 5: Network of prototypes
A test environment is created as a spin-off
product where subsequent problems can be
tested and solved. An individual device using
the hardware abstraction layer can be started
as a prototype on the PC while the remaining
network consists of the real CANopen nodes.

8 Process abstraction layer

With a flexible implementation of the
hardware abstraction in the process, the
process quantities can be simulated by a
separate module in the application (Fig. 6).
Unlike open inputs with unpredictable values
the process abstraction layer can produce
values in predefined value ranges and
predefined or recorded trajectory. This
makes additional use of the simulation
module as a test module in the later course of
the system development possible. Therefore
it is advisable to design the module to be
configurable. A configuration possibility
through CANopen is reasonable and easy to
implement.
By the consistent use here of the
programming language C the process
simulation or the test module is operational
both on PC platforms and on the target
system.
The process quantities generated must be
processed and, depending on the type of the
process quantity, be transmitted by PDO.
There are cyclical, synchronous or event-
controlled PDO. Based on these PDOs the
communication relationships between the
devices are simulated. In the early
development stage one can therefore receive
a summary of the logical operations in the
network (the PDO-Linking) without a
message having to be transmitted physically
over the CAN bus.

iCC 2006 CAN in Automation

06-5

Using the calculated bus load, informatino
about the PDO communication
relationships or the distribution of the
functions for the devices in the network
can be derived. When an unfavorable
network or function partitioning arises the
prototypes can be adapted appropriately in
this early stage of development.

Figure 6: HAL and simulation of
process signals

9 Summary

The use of a simulation software with a
special programming language for the
simulation seems attractive at first. The
prototype approach has the advantage of
the re-usability of the implementation in
programming language C which is
commonly used in embedded projects. A
shorter training period necessary for
learning another programming language
and the operation of complex software
accompanies the prototype approach.
The consistent use of a hardware
abstraction layer enables the reuse of the
prototype code on different targets. This
simplifies a migration to a more powerful
hardware if intial system tests reveal a
shortage of computing power or memory
resources for the application.
In conclusion one can say that this
framework for Rapid Development of
CANopen Systems is proven to be
practiable and gives fast results. It has to
be stressed that the double development
of a simulation system of the device
software can be omitted. The
development times are considerably
shortened by the prototype approach.

References

[1] CAN in Automation, Application Layer and
Communication Profile DS301 (04 January 2006).

[2] CAN in Automation, Additional application layer
functions DSP302 (18 April 2004).

[3] http://en.wikipedia.org, Software Prototyping.
[4] http://www.port.de/pdf/fli4l-can.pdf, TCP/IP -

CAN/CANopen Server.

Glossary

HAL Hardware Abstraction Layer
IPC Interprocess

Communication
TCP/IP Transmission Control

Protocol Internet Protocol

