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Abstract:  Distributed control systems are ubiquitous nowadays, with applications 
ranging from vehicle to shop-floor control. With the increased penetration of control 
systems in all application, the need for reliable communication among the members of 
the system is more crucial than ever. Standard CAN bus networks already have 
embedded a mechanism to guarantee the provision of service in face of a one-wire 
fault in a two-wire differential cabling infrastructure. However there is no mechanism 
to guarantee continuity of service in the event of a two-wire fault. To achieve this, one 
needs spatial redundancy for the cabling infrastructure. However, the design and 
implementation of such kind of solutions places problems with a non-trivial solution, 
despite the end result is quite simple. This paper addresses how a FPGA-based 
solution may be used to enhance CAN network availability through the management of 
the several physical media which support a single, logical medium. 
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1 - Introduction  
 
With the advances in miniaturization of 
processing units, microcontrollers found 
their way into nearly all fields of 
application, including control applications.  
 
Control is nowadays a reality present in 
almost all systems we interact with in a 
daily basis, like cars, lifts, automatic doors. 
These systems are composed by sensors, 
which gather information about the 
surrounding environment, controllers who 
process this information and actuators 
who act accordingly to the output of the 
controllers. Sometimes these elements are 
not physically located in the same place, 
and need some sort of interconnect to 
convey the information between them. 
One of the solutions to solve the problem 
of component interconnection in a 
distributed system is CAN, the Controller 
Area Network fieldbus [1, 2]. 
 
In addition, almost all distributed control 
applications have high dependability 
requirements, meaning the overall system 
must exhibit a set of strict availability, 
reliability and timeliness requirements 

which cannot be fulfilled by the native CAN 
protocol [19, 9, 12]. 
 
However, given the amount of applications 
based on standard CAN controllers, the 
most effective solution to enhance the 
dependability of a CAN fieldbus 
infrastructure without compromising the 
cost would involve the use of "components 
off the shelf".  
 
In this paper the implementation of the 
mechanisms described in [8, 9, 11], is 
thoroughly analysed in respect to the 
engineering problems they pose and how 
to solve them, achieving a cost effective 
solution to enhance the dependability of 
CAN-based systems and applications. The 
provision of a highly available network 
infrastructure that uses only bus media 
redundancy is a simple solution of utmost 
importance for building highly dependable 
CAN-based systems. 
 
This paper is organized in the following 
manner: Section 2 introduces the 
framework to enhance CAN dependability 
and timeliness characteristics, the CAN 
Enhanced Layer, CANELy; Section 3 
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describes the CANELy hardware 
architecture, and how it provides support 
for the implementation of CAN protocol 
enhancement mechanisms, such as bus 
media redundancy; Section 4 analyses the 
design and implementation of the specific 
mechanisms to handle the bus media 
redundancy; Section 5 concludes the 
paper. The paper assumes the reader to 
be fairly familiar with CAN operation [1, 2]. 
 
 
2 - The CANELy Framework  
 
The CAN fieldbus is a very important 
design component. However, would CAN 
technology be used by system designers 
as a core building block of dependable, 
hard real-time systems and applications? 
 
A large set of devices, intended for the 
implementation of the CAN standard layer 
are available in different configurations: 
stand alone CAN controllers [18]; devices 
integrating in a single chip, single/dual 
CAN controllers and an intelligent 
processing infrastructure [3]; or, more 
recently, CAN controller cores [15, 16]. 
This represents a very strong argument in 
favor of using commercially available CAN 
technology. 
 
The shortcoming of that approach is well 
known: the native CAN protocol exhibits a 
set of severe limitations in respect to the 
provision of dependability properties, such 
as strict availability, reliability and 
timeliness attributes [19]. This problem 
was thoroughly investigated in [9] and it 
was discovered that to attain the levels of 
dependability provided by other similar 
technologies (e.g. TTP [20]) a set of fault 
tolerance and timeliness-related services 
was missing. 
 
However, those services can be provided 
off-the-shelf (i.e. without modifications to 
the CAN standard or to existing CAN 
controllers), meaning CAN operation can 
(and should) be complemented/enhanced 
with some simple machinery and low-level 
protocols, able to secure the strict 
reliability, availability and timeliness 

guarantees needed by highly fault-tolerant 
real-time systems and applications [9,12]. 
 
In [9], this concept is called CANELy, the 
CAN Enhanced Layer, a CAN-based 
infrastructure able to extremely reliable 
communication.  The CANELy architecture 
represented in Figure 1 identifies the main 
functional modules. The CAN standard 
layer is the central component of CANELy. 
Other CANELy specific components are 
required to secure: 
 
• highly available network infrastructure, 

through redundancy; 
• hard real-time operation, even in the 

presence of glitches in network 
operation; 

• reliable CAN communications. 
 
The CANELy architecture follows a 
modular approach, allowing system 
designers to include only the components 
needed for a given application. For 
example, in the architecture of Figure 1 it 
is assumed the use of simple media 
redundancy, although we do not preclude 
the utilization of full space-redundant 
network architectures, whenever glitch-
free operation and tight timeliness 
guarantees are required. 
 

 

Figure 1  CANELy Architecture 
 
The functional modules in the CANELy 
reliable communications protocol suite are 
built on top of the exposed CAN standard 
layer interface as a software layer 
composed of simple low-level protocols 
and aim to render a programming interface 
enhanced with a set of semantically rich 
services, such as reliable group 
communication [7], failure detection and 
membership [10], clock synchronization [6] 
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and support to group management. These 
services are extremely useful to the 
implementation of distributed fault-
tolerance techniques [9]. 

 
Other modules in the CANELy architecture 
are intended to support: the control of 
CAN inaccessibility [11]; configuration and 
layer management [9]. The additional 
information provided by these modules 
can be made available to upper layer 
entities, through a management interface 
and used by other components in the 
system able to secure hard real-time 
operation [21, 22, 23].  
 
 
3 - CANELy Hardware Architecture 
 
The basic mechanisms needed to enforce 
timeliness and dependability in the 
CANELy system architecture must be 
implemented by special-purpose logic 
machinery. Such additional mechanisms 
are not complex to implement, being able 
to fit in small sized devices, such as 
Programmable Logic Devices (PLDs). 
However the low-cost and high density of 
today programmable logic devices such as 
current Field Programmable Gate Arrays 
(FPGAs) opens room for the integration of 
both basic and advanced dependability 
and timeliness enforcement functionalities. 
 
The CANELy hardware architecture is 
therefore composed by three essential 
blocks:  
 
• a microcontroller, containing the native 

CAN controllers and providing support 
for the execution of the CANELy 
protocol suite [7, 10, 6, 11, 9]; 

• a FPGA, holding the implementation of 
the required special-purpose low-level 
machinery functions;  

• the CAN transceivers, dealing with the 
CAN physical (PHY) layer.  

 
The FPGA machinery performs the 
continuous monitoring of the standard 
CAN channel interfaces, detecting CAN 
bus errors such as frame omissions and 

disabling medium interfaces affected by 
failures. In addition, the microcontroller 
interfaces the FPGA for the overall 
management of the machinery being 
introduced to enhance CAN dependability 
and timeliness attributes. The CANELy 
hardware architecture is depicted in the 
diagram of Figure 2.  
 

 

Figure 2  CANELy Hardware 
Architecture 
 
Apart from replication, a completely 
standard physical layer interface is used, 
allowing multiple design solutions for the 
cabling infrastructure. In particular, it 
allows the use of inexpensive two-wire 
differential cabling plus commercial non 
fault-tolerant transceivers. 
 
In the current prototype implementation 
(Figure 3) it is used: a MaximDallas 
DS80C390 microcontroller [3]; a FPGA 
Xilinx Spartan 3E device [4]; MAX13054 
CAN transceivers [5]. 
 

  

Figure 3  CANEly Prototype 
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4 – CANELy Low-Level Engineering   
 
The FPGA infrastructure integrates a set 
of basic dependability enforcement 
mechanisms. Roughly, they correspond to 
the low-level mechanisms of the CANELy 
architecture.  
 
4.1 Handling Physical Network Partitioning 
  
A fundamental problem regarding the 
dependability of the fieldbus infrastructure 
concerns network availability. For 
example, in harsh environments cabling 
may be damaged, which in turn affects the 
behaviour of the transmission medium and 
therefore network operation. 
   
In [8] a Columbus’ egg idea was devised 
to solve the problem of CAN network 
availability, managing the interface of the 
different media in the PHY layer with only 
one MAC* sub-layer. The Columbus’ egg 
strategy is based on the fundamental 
nature of CAN and on its quasi-stationary 
operation, extending the wired-AND 
properties of physical bus operation to the 
CAN Channel interface. This means only a 
single conventional AND gate, inserted 
between the medium interfaces and the 
standard CAN controller (cf. Figure 4) is 
needed to provide resilience to medium 
partitioning faults. 
 

 

Figure 4  CAN Columbus’ Egg Strategy  
 
That means a medium exhibiting a 
dominant bit value will always prevail. 
Additional mechanisms are required to 
handle medium stuck-at-dominant faults, 
but these are not hard to implement. The 

                                                
* Medium Access Control. 

standard CAN specification [1] does not 
allow a correct medium to be at a 
dominant state for more than a given 
number of bits. Such kind of errors can be 
easily detected and the contribution of a 
stuck-at-dominant medium to the Channel 
receiver signal can be disabled. 
 
The Columbus’ egg strategy, together with 
the management of stuck-at-dominant 
medium faults is implemented in VHDL† by 
the mechanisms specified in Figure 5, 
resorting to implicit loop unrolling 
techniques in the VHDL synthesizer and 
following the guidelines present in [17]. 
 
-- Bare Columbus' egg strategy 

Ch_Rx  <= '1'  
when  M_Rx_in = (M_Rx_in'range=>'1')  
else '0'; 
 
-- Medium disable logic 
M_Rx_disable: process (M_Rx, M_dis) 
begin  
  for m in 1 to NumberMedia loop 
    M_Rx_i(m) <= M_dis(m) or M_Rx(m); 
  end loop;   
end process M_Rx_disable; 
 

Figure 5  CAN Media Selection in VHDL  
 
4.2 Handling Stuck-at Faults  
 
Though resilience to medium stuck-at-
dominant faults is handled at the media 
selection level, network operation can be 
affected by other stuck-at failures: 
 
• stuck-at-recessive medium, which 

does not disturb network operation. 
Nevertheless, such kind of failures are 
detected by the CANELy low-level 
machinery and signaled to high-level 
management entities, e.g. for diagnose 
and repair purposes; 

• stuck-at-dominant Channel, which may 
severely disturb the operation of the 
CAN protocol. This kind of failure is 
handled by the CANELy machinery 
through low-level mechanisms allowing 
early failure detection and disable of 
the corresponding Channel interface. 

                                                
† Very High-Speed Integrated Circuits (VHSIC) Hardware 
Description Language. 
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Note that commercial state-of-the-art 
CAN transceivers such as the 
MAX13054 [5] also integrate additional 
mechanisms for transceiver disabling 
upon the detection of a stuck-at-
dominant transmitter. In any case, the 
CANELy mechanisms are highly 
effective allowing in general an earlier 
detection of such failures;  

• stuck-at-recessive Channel, which 
must be (and usually is) handled 
directly by the CAN controller. 
 

Naturally, other CAN controller failures, 
such as deaf receiver, stuck-at-dominant 
receiver and general receiver/transmitter 
failures are handled directly by the native 
error confinement mechanisms of the 
standard CAN controller [9, 13, 14]. 
 
4.3 Frame Monitoring  
 
The assertion of frame monitoring signals, 
as specified in [8, 9,11] can be engineered 
through a simple general pattern detection 
methodology. There is always a pattern of 
recessive (r) and dominant (d) bits to be 
detected, upon monitoring the sequence of 
incoming bits at the Channel and Medium 
interfaces. 
 
 

 
 

Frame Monitoring 
Signal Reference Detection 

Pattern 
Frame correct ChFok rdrrrrrrr 
Transmission correct ChTok rdrrrrrrrrr 
End of Transmission ChEOT rrrrrrrrrr 

 

Figure 6  CANELy Frame Monitoring 
 

A clear example of this methodology is the 
detection of a correct frame reception, with 
the assertion of signal ChFok, upon the 
detection of the pattern specified in the 
diagrams of Figure 6. 

The engineering of a generic 
implementation for the pattern detection 
machinery is presented in Figure 7.  The 
idea of the corresponding VHDL 
description is the continuous comparison 
of the incoming bitstream with the desired 
pattern, stored in an internal Read Only 
Memory (ROM).  
 
The correct detection assessment is done 
through the comparison of the current 
ROM address with the programmed 
pattern length. Otherwise, the process 
returns to the initial position and starts 
comparing all over again. 
 
begin 
  -- purpose: To detect a pattern 
  -- type   : sequential 
  -- inputs : Clk, Reset_N, D_in  
  -- outputs: count 
  PDetection: process (Clk) 
  begin 
    if Clk'event and Clk='1' then 
      if Reset_N = '0' then 
        count <= 0; 
      else 
        count <= cnta; 
      end if; 
    end if; 
  end process PDetection; 
   

cnta <= (count + 1)  
when D_in = pattern_rom(count) and 
     count/=pattern'length  
else 0; 
P_Ok <= '1'  

when count=pattern'length 
else '0'; 

end 
 

Figure 7  Detection of patterns in VHDL  
 
Each frame monitoring signal is 
implemented through a particular 
instantiation of the general description 
specified in Figure 7, using advanced 
features of the VHDL language such as 
dynamic sizing and parameterization of 
the component internal structures. This 
has allowed an extremely simple design 
solution, as shown in Figure 7.  
 
The pattern detection scheme can be 
further extended to enhance the resource 
utilization efficiency, through a sort of 
resource sharing. For example, the 
assertion of ChTok can be seen as an 
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extension of ChFok, the assertion of the 
former implies the assertion of the later. 
This way we can pack the machinery in a 
denser form at the cost of losing a generic 
pattern detection machinery description.  
 
4.4 Additional Dependability Mechanisms  
 
The engineering of the CANELy low-level 
mechanisms also includes advanced 
machinery functions such as: accounting 
and management of each medium frame 
omission degree, i.e. the number of 
consecutive frame omissions on that 
medium; media quarantine mechanisms, 
which temporarily disables a given 
medium when it exhibits an excessive 
number of errors, until (if) it behaves well 
again; the provision of a system level 
management interface.   
 
 
5 – Conclusions and Future Work  
 
This paper has addressed the engineering 
of the low-level machinery mechanisms of 
CANELy, an architecture able of extremely 
reliable communication using the standard 
CAN components enhanced with a set of 
additional hardware/software mechanisms. 
 
The low-level machinery mechanisms are 
deployed in a Field Programmable Gate 
Array (FPGA) and specified using VHDL 
descriptions. Advanced features of VHDL 
such as component dynamic sizing and 
parameterization were used in order to 
reduce the complexity of the design flow. 
 
A prototype board of the CANELy 
architecture that combines a Xilinx 
Spartan 3E FPGA with a MaximDallas 
DS80C390 microcontroller and integrates 
this design is currently being developed. 
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