
iCC 2008 CAN in Automation

02-16

Automatic CANopen Test Generation

Kai Schmidt, Vector Informatik GmbH

The growing complexity of today’s system architectures is associated with an
increase in the effort that must be invested in test specification, test creation and test
execution during the development of such systems and system components. Test
specifications should be available in early phases of the development process, e.g.
after the system architecture has been created or during component design. This
makes it possible to detect errors early and correct them cost-effectively.
Device descriptions can be prepared for CANopen systems as early as after definition
of the component architecture. Together with the system definition, the device
descriptions form the basis for creating test specifications. They can be used to derive
executable test sequences, which in turn can be executed in a suitable runtime
environment.

Definition of the overall system

The development process for a CANopen
system can be described based on the V-
model (see Figure 1). In the first phase,
system requirements are defined, which
for the most part contain the definitions of
individual “use cases” [1]. This information
represents the input for the next step,
where initial assessments can already be
made of the system architecture.
Functions are assigned to the individual
ECUs, and device descriptions can be
created for all devices in the form of EDS
files (the format of the EDS files was

standardized by CiA – CAN in Automation
– and is being further developed by this
organization in cooperation with industry).
In addition, communication relationships
between the ECUs can be configured, as
network management and error detection
mechanisms. These definitions form the
foundation for:

1. Simulation of the overall system
2. Creation of test specifications
3. Requirements specification for

suppliers

Real ECUs +

remaining bus simulation

OEM

Supplier

System Architecture,

Simulation Model

System Requirements Accepted System

ProductionIdea

Communication Test

Test specification

ECU Design

SW Modules,

HW Modules

ECU (SW on HW) +

remaining bus simulation

SW Architecture Unit Test

Application Test

Communication

Test

Figure 1: Development process of a CANopen system

iCC 2008 CAN in Automation

02-17

A first test specification

EDS files describe significant parts of the
functional scope of a CANopen device.
These device descriptions form the
foundation for executing the simulation
and creating test specifications.
Communication-specific tests can be
derived directly from the device
descriptions. An example of this would be
a test that checks all objects in the object
dictionary by SDO accesses and records
the results. Besides communication-
specific tests, application-related tests can
also be specified. An example of such a
test would be to stimulate the transmission
of the digital input of an I/O device.
Afterwards, a check is made to verify that
the signal value exists at the output. Both
tests could be used early in the simulated
overall system. As soon as the stability of
the overall system has been achieved,
development of the individual components
can be subcontracted. The EDS files can –
with the exception of application-related
behavior – be considered as a
requirements specification for the supplier.
Parallel development of the ECUs at the
suppliers is accompanied by the simulated
overall system. Application-related tests
can also be utilized at the supplier to test
the behavior of the device to be developed
within the overall system. This can
significantly reduce the number of cost-
intensive changes desired by the OEMs –
which generally occur within the
integration phase. Communication-specific
tests can be created at the supplier in a
similar way as at the OEM.

Integration of the components

After completion and acceptance of the
components, they are successively
integrated into the simulated overall
system. The previously created
communication and application-related
tests can now be applied to the system,
consisting of the physical components and
the rest-of-bus simulation. As soon as all
of the components have been delivered
the concluding test of the real overall
system follows.

EDS files as the basis for generation

The development process should include
the creation of an EDS file appropriate to
the device. Unfortunately, practice shows
that device producers often neglect this
work step. Faulty or incomplete EDS files
are the result; in the worst case there is no
EDS file at all for a device. The
development process described above
shows that it is not just device producers
who need to be concerned with creation of
EDS files, but system designers too.

CiA 417

CiA 402

0x1000

0x1018

0x1400

CiA 301

.

.

.

.

.

.

0x6000

0x6002

0x6200

CiA 401

.

.

.

.

.

.

0x2000

0x2003

0x3100

manufacturer

specific

.

.

.

.

.

.

.
.
.

EDS EDS EDS

Figure 2: Arrangement of device
functionality

The task of the system designer here is to
distribute functionalities to the individual
components. These could be standardized
functionalities such as mechanisms for
process data communication, but they
might also be manufacturer-specific
functionalities. Both of these are mapped
via objects in the object dictionary.
Standardized functionalities are described
by CiA in standardization documents. Both
the objects described in these documents
and manufacturer-specific objects can be
stored in a database format that is also
standardized. The necessary objects can
be selected from the object pool that is

iCC 2008 CAN in Automation

02-18

created in this way, and be assembled into
an object dictionary (see Figure 2).

Flexibility of the simulation

The device descriptions contain all of the
information necessary for simulation of the
CANopen device. The overall system,
consisting of the individual device
descriptions, is parameterized utilizing a
suitable configuration tool, and an initial
system description is obtained in the form
of device configuration files (DCF), whose
format has also been standardized by CiA.
Based on this configuration, simulation
models can be generated and executed in
a suitable runtime environment. At an
early point in the project, this already
enables conclusions about the time
behavior of the overall system. If
excessive bus loads occur, for example,
actions can immediately be initiated to
correct the problem, since suppliers have
not been involved in the development
process yet. Accordingly, the simulated
overall system offers a high degree of
flexibility. It can be refined iteratively until it
satisfies the defined requirements.
Changes to the simulated system can be
implemented cost-effectively and be
checked immediately.

Derivation of test sequences

Besides the simulation, it is also possible
to derive initial tests on the protocol and

communication levels from the device
descriptions. The protocol test includes
checking of the SDO protocol, for
example. The communication tests do not
check for correctness of the protocol, but
instead for correct flow of message
sequences. For example, it is possible to
test whether the configuration sequence
for process data objects conforms to the
sequence specified in CiA 301 [2]. The
following test templates with general
application can be defined for a CANopen
device:

• SDO Download Test
• SDO Upload Test
• Heartbeat Producer Test
• Heartbeat Consumer Test
• Transmit PDO Test
• EMCY Test

Simple generation templates can be used
to create device-specific test sequences.
Test functions are created for each object
contained in the object dictionary here.
The test functions are parameterized
based on the data contained in the
configuration files for the devices. Among
other things, test sequences can be
generated to check the:

• PDO configuration
• Default values
• Object dictionary
• NMT state machine, and
• SDO protocol

iCC 2008 CAN in Automation

02-19

System
Description

Component Definition

System Definition

Test Specification

Simulated CANopen System
CAN-Bus

System GenerationImplementation

real
CANopen

Node

Real Node + Simulated CANopen System / Test environment

simulated
CANopen

Node

simulated
CANopen

Node

Figure 3: Development process of a CANopen system

The generated tests may be executed
right away in a suitable runtime
environment. In the framework of
integration work, it is precisely such tests
that are used to check the delivered
components. In turn, suppliers can
generate similar test sequences to assist
in development. They can immediately be
applied to the prototypes. Essentially, this
is a way to generate test sequences of the
conformance test (CiA 310) node-
specifically. However, the goal of the
system should not be to replace the CiA
conformance test altogether. The system
should accompany the development and
give developers a way to test devices in
advance of the actual tests. The final
certification is only performed by CiA.

Generation templates

Generation templates must be created for
each test, but they are applied to each
device to be tested. A generation template
that describes the creation of a test for
checking the object dictionary would
appear as follows:

for all objects
{
 get access type

 if(access == read only){
 add test function SDO Upload
 to test sequence
 } // if
 else if (access == read write){
 add test function SDO Upload
 to test sequence

 add test function SDO Download
 to test sequence
 } // else if
 .
 .
}

The generated test sequence created
based on this test template contains a
number of parameterized (by entry of
object index, etc.) write and read routines.
They are processed sequentially in test
execution.

Iterative development process

Since iterative processes are applied
throughout a device’s development, the
process for generating test sequences
must be repeatable as often as needed.
Changes to the device design can affect
the device descriptions. The test that was
originally generated would then likely fail.
Nonetheless, it is still necessary to be able
to manually extend test sequences after
generation, e.g. to incorporate application-

iCC 2008 CAN in Automation

02-20

specific supplements. These extensions
must be read back when the sequence is
regenerated. Extensions must be
implemented in interface functions whose
call and function definitions have already
been generated into the test sequence:

Test start

// check object 0x1000
PreSdoUpload_1();
SDOUpload_1(0x1000,…);
PostSDOUpload_1();

// check object 0x1017
PreSdoUpload_2();
SDOUpload_2(0x1017,…);
PostSDOUpload_2();
PreSdoDownload_2;
SDODownload_2(0x1017,…);
PostSDODownload_2();
.
.
// check object k
PreSdoDownload_n();
SDODownload_n(0x1017,…);
PostSDODownload_n();

Test stop

Application-related tests

The application-related behavior of the
devices can not be represented in the
device descriptions. Furthermore, the
tester does not want to have to deal with
the CANopen-specific conceptual world
and its definitions on the application level.
On this level, it is entirely unimportant to
know which signal is mapped to which
object at which position. More important is
information about which signals exist and
which devices receive or send them.
Among other things, precisely these
aspects must be tested. This subject
matter can be explained by the example of
the CiA 447 application profile (application
profile for special-purpose car add-on
devices):

The standard defines an object “GPS
date”. Mapped to this object are the
signals “GPS date year”, “GPS date
month” and “GPS date day”.

Figure 4: “GPS date” object description

The CiA 447 profile, besides defining
signal allocations in the objects, also
defines the transmission type. The
standard specifies that the object value
“GPS data” is transmitted by SDO
protocol. The following information is
needed to transmit a signal as part of a
test:

• Index + Sub-Index of the object
• Signal length
• Start position of signal within the

object

The format of today’s EDS files is unable
to describe the signal allocations of object
values. Accordingly, information such as
the signal length and start position of the
signal is also unsupported. Even if these
requirements could be implemented, it is
not possible to automate generation of
application-related test sequences, since
the behavior of the system is not
described.

A generated test environment

Nonetheless, the developer can be
supported by generation of an “interaction
layer” in test creation. If this extension can
be integrated in the simulated overall

iCC 2008 CAN in Automation

02-21

system, then it is easy to create
application-related test cases.

physical

CANopen

device

(DUT)v

physical

CANopen

device

(DUT)v

CAN-Bus

physical

CANopen

device

(DUT)

generated

Interaction layer

Test sequence

generated code

Simulated node

CANopen

communication

generated

Interaction layer

generated code

Simulated node

CANopen

communication

Figure 5: Generated test environment

The test system consists of the simulated
nodes that are extended to include an
“interaction layer”. One or more physical
devices are tested. The simulated devices
are stimulated via generated interface
functions. Signal values are mapped to
object values and the CAN messages are
sent. In the example depicted, the signal
value “GPS date month” would be mapped
to the relevant position in the object value
(startbit 16, length 4 bit). Without this
mapping, the test step for sending the
signal “GPS data month” = 12 (December)
would appear as follows:

// write signal “GPS data month”

SDO Download(src,
 dst,
 0x60B3,
 0xC0000);

Parameters one and two define the send
and receive nodes. The relevant object is
given in parameter three. Parameter four
describes the object value to which the
signal (signal value = 12) was mapped.
Parameterization of the test functions
assumes that the positions and length of
the signals are known. Moreover, the
transmission type must be considered.
This information is described exclusively in
the standard and must be considered in
test creation. Use of an “interaction layer”
enables signal-oriented test creation. The

following test function is used to send the
signal “GPS data month”:

Send_GPS_month(src,dst,12);

It will be possible to define the function
“Send_GPS_month” and generate its
implementation based on the CiA 447
specification, if it exists in XML format in
the future. Today’s format of the
specification requires converting the
specification to a readable format (XML or
Excel). This conversion task can be
assumed by a generator. The generated
functions contain a mapping of the signal
to the object value and a routine for
sending the CAN messages. During test
creation, the test engineer need not be
concerned about signal positions, indices
or transmission types. All the test engineer
is interested in are the signal name,
sender, receiver and signal value.

Summary

Continually shorter development cycles
necessitate a development process that is
continually becoming more effective.
Serious errors that are not localized during
the integration phase drive project costs to
enormous heights. Test scenarios that
assist in development can make a
contribution to detecting errors as early as
possible and correcting them cost-
effectively. Based on EDS files, it is
possible to automatically generate test
scenarios that check communication
behavior device-specifically. Generation of
application-related tests is not possible,
since normally there is no standardized
syntax for describing the behavior of the
application. Nonetheless, generation of an
“interaction layer” in test creation still offers
test engineers support. The basis for this
is formed by the application profiles
standardized by CiA. The use of an
“interaction layer” enables simple, quick
and error-free creation of test scenarios of
any desired complexity.

iCC 2008 CAN in Automation

02-22

Kai Schmidt
Vector Informatik GmbH
Ingersheimer Str. 24, D-70499 Stuttgart
+49 711 / 80670-0
+49 711 / 80670-249
kai.schmidt@vector-informatik.de
http://www.vector-informatik.com

References

[1] Jürgen Klüser, Vector Informatik GmbH:
Test Requirements in Networked Systems

[2] Mirko Tischer, Vector Informatik GmbH:
Prototyping and testing CANopen systems

[3] CiA 447, Application profile for special-
purpose car add-on devices

