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Most standalone CAN controllers available today are connected to the host system by 
eight or sixteen bit wide parallel buses. Write and especially read accesses to such 
peripheral devices are very slow compared with the cycle time of modern CPU's. This 
paper discusses the resulting performance bottleneck and  shows a solution, using a 
CAN controller implemented in an FPGA,  that can use bus master DMA. 
 
 
Introduction 
 
There are still no CAN controllers integrat-
ed into most high end microprocessor 
chips and a common way to add CAN us-
ing these processors is simply to connect 
one or more standalone CAN controllers to 
such systems.  
 
My co-workers and I have done a perfor-
mance analysis on an embedded system, 
as we have found out, that the perfor-
mance of this system does not scale well 
with increased CPU power.  
  
Unfortunately we found out, that one of the 
bottlenecks was a CAN interface build 
around a SJA1000. 
 
There are numerous eight bit accesses to 
the chip necessary to handle one CAN 
frame and most of these accesses are 
done in the interrupt routine with each ac-
cess taking quite a while. 
 
The Performance Bottleneck 
 
The reason for this is that most available 
standalone CAN controllers are designed 
to work with relative low power microcon-
trollers.  
 
The consequences are rather slow 8 or 16 
bit wide interfaces. Interfacing such a 
device to state-of-the-art CPU's results in  
 
a performance bottleneck, as the CPU and 
the system bus may be blocked for several  
 

 
thousand cycles by a single access to one 
register of the CAN controller. 
 
The introduction of serial system buses 
like PCI Express makes the situation even 
worse, as these bus systems are op-
timized for streaming large blocks of data 
from the device to the memory of the host 
CPU and vice versa, while normal 
standalone CAN controllers rely on  single 
byte accesses. The resource “System Bus 
Interface” is blocked for the other threads 
in the CPU core, that is used by the CAN 
process, as well as for all other CPU 
cores. Therefore you have to minimize 
“read” accesses to the device, and all 
“write” accesses should be posted, so the 
CPU does not need to wait for the 
completion of the accesses. 
 
As an extreme example, the read access 
to an 8 bit register of a CAN device 
connected by PCI Express, may take up to 
2000ns, and a 3 GHz CPU has to wait 
here for 6000 clock cycles.  
 
Today, as even PCI slots  may be 
connected with a PCI Express to PCI 
bridge to the host CPU, a single byte 
access to a PCI device is even slower due 
to the additional delay of the PCI Express 
to PCI bridge. Please note, while the 
access time to the real device is less than 
100ns long, the time is spent sending for 
example a 160 bit long request packet to 
the PCI Express Bridge, then waiting the 
100ns device access time, and for replying 
a 160 bit long answer packet from the PCI 
Express Bridge to the CPU. 
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A First Approach 
 
At the time we detected this bottleneck, 
about 10 years ago, we decided to use a 
very small FPGA to poll the data from the 
SJA1000 CAN controller, present them in 
a 32 bit wide register within the FPGA to 
the CPU and to transfer a CAN  message 
from 32 bit wide registers in the FPGA to 
the SJA1000. 

 
Figure 1: Supporting SJA1000 CAN 
Interfaces with a small FPGA 
 
As an additional feature, the CAN-ID, DLC 
and data fields  of the CAN frame were 
now arranged in a way that is much more 
convenient for a 32 bit processor. It was 
possible now to handle the data transfer 
on task level and not within the interrupt 
service routine. Even this project was only 
partially successful due to  the limitation of 
the affordable FPGA resources at that 
time. The idea was born to implement a 
high performance CAN controller in an 
FPGA.           
 
Technology used by Ethernet 
 
Even computer systems with slower CPU's 
can handle several Ethernet interfaces 
without a significant CPU load, so why not 
have a look, how  a typical Ethernet 
controller is build? 
There are, for example, only very few 
Ethernet controllers available today, 
intended for the use in low end and low 
performance applications, that rely on data 
transfer done by the host CPU. 
 
The majority uses an at least 32 bit wide 
interface, and transfers the data directly to 
and from the memory of the host CPU. 
 

On the other hand, there are only a few 
Ethernet controllers, that use a local CPU 
to transfer data.  
 
Why not use this well established 
technology for a CAN controller, too? 
Perhaps the market for a high end CAN 
ASIC or custom chip is too small.  
 
CAN Interfaces with Local CPU 
 
In the past and still nowadays, these 
problems are often mitigated by using  
“active” CAN interfaces, where the CAN 
controllers are connected to a local 
microcontroller, or even are an integrated 
part of that chip. 

 
Figure 2: CAN Interfaces with a local CPU 
 
If  the local microcontroller of those 
implementations has the possibility to 
access the memory of the host CPU, it is 
possible to mitigate the issue with long 
access times quite well, but there is a new 
problem: As these processors used here 
are typically 10 times slower than the host 
CPU's, they introduce a noticeable delay 
between the transmit command of the  
host CPU and the appearance of the CAN 
frame on the CAN bus, and from the 
physical reception of the CAN frame until it 
is available to the host. This will increase 
the turnaround time for protocols, that rely 
on a direct answer from a device on that 
CAN bus, for example when doing an 
CANopen SDO transfer. 
 
Use a CAN Controller with SPI Interface? 
 
SPI (Serial Peripheral Interface) is a four 
wire serial interface used for the connec-
tion of slower peripheral devices to a host 
CPU. An additional wire for an interrupt is 
typically needed to connect a CAN con-
troller. 
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Many high end microprocessors that do 
not have a CAN interface on chip provide 
very powerful SPI interfaces with very 
short access times. But due to slow SPI 
clocks, known SPI CAN controllers like 
Bosch CC750/CC770 or Microchip 
MCP2515 use only 8 MHz or 10 MHz, 
there will be again a significant delay intro-
duced for the transfer of the CAN 
message. 
 
The transfer of an 8 byte CAN frame with 
the SPI interface may take more than 10 
microseconds. Depending on the SPI 
controller, there might be an interrupt for 
every byte transferred to the CAN 
controller, or the CAN driver has to poll for 
the completion of the transfer of each byte. 
 
The only remaining advantage is, that the 
system bus is not blocked for other CPU's. 
 
Develop our own CAN Core? 
 
Before implementing a CAN core from  
scratch, it should be good engineering 
practice to check, if there are CAN cores 
available, that meet the requirements and 
the budget limits of the project. 
 
With the knowledge gathered from the 
development of CAN drivers for many 
different CAN controllers, different 
operating systems, host system 
architectures and numerous CAN 
applications, we had to accept, that there 
is no CAN core available, that fulfills all 
requirements, or where the supplier is 
willing to modify his core for a reasonable 
price and within the given timeline. 
 
Again, we had to find out, that most of the 
CAN cores in the market are only 
designed for the use in simple CAN I/O 
nodes.     
 
Requirements 
 
Our new CAN core must be compliant to 
ISO 11898-1 (CAN 2.0A and CAN 2.0B) 
and must support all relevant baud rates. 
 
It must have a 32 bit wide interface, but it 
should be possible to synthesize it for 16 
bit or even 8 bit wide bus interfaces. 
 

It must provide 64 bit wide timestamps 
with a resolution of less than 1 
microsecond. 
 
There must be deep enough FIFO's for the 
transmit and receive path, to allow the 
usage within non real time systems. 
 
The CAN core shall be able to generate 
100% bus load. It must be able to receive 
a long stream of CAN messages with zero 
bytes of data without losing a message.  
 
A “transmit done” or “transmit aborted” 
indication must be placed in the receive 
FIFO. This is necessary to inform the 
driver and application software of the 
exact sequence of the CAN frames on the 
bus. 
 
It must be possible to abort any transmit 
request, that has not already won the bus 
arbitration and to get an indication for this 
event. This requirement is  for example 
necessary  to implement protocols that 
allow the transmission of a frame in a 
predefined time slot only (e.g. ARINC825).  
 
It must have a seamless interface to a 
busmaster unit. 
 
It must be possible to evaluate the CAN 
baud rate of an active bus without a 
significant delay and without any 
disturbance of the CAN messages. 
 
An interrupt status register has to be 
implemented in a way, that allows a 
minimum number of accesses in the 
interrupt service routine, ideally no reads 
and as minimal as necessary write 
accesses. 
 
It must be modifiable and extendable, the 
HDL source code must be available, and 
there should be no limitations in the use of 
the core. 
 
The core should be written in VHDL. 
 
The core should support a second local 
bus interface. This is necessary to allow a 
host CPU and a local CPU to access the 
same CAN bus. Although it would be 
possible to use two distinct CAN cores for 
the same pysical CAN interface, one for 
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the local and one for the host CPU, such 
an implementation would make it 
impossible to send messages with the 
same identifier from both CPUs. 
     
The Basic CAN Core 
 
The basic CAN core is built up from a CAN 
bit stream engine, two FIFO memories and 
a register file. 
 
The bit stream engine constructs  the 
stuffed CAN message, arbitrates for the 
bus, sends the message, adds the CRC 
and  framing bits and checks for 
retransmission. It also receives the data 
from the bus, does the CRC check, and 
sends ACK and ERROR flags. The 
handling of the CAN error states is 
implemented here, too.  
 
The register file is the interface to the driv-
er and it is connected to the bit stream en-
gine by the transmit and the receive FIFO. 
It also  provides the bit timing parameters 
for the bit stream engine and reports the 
status information from the bit stream 
engine to the driver. 

 
Figure 3: Basic CAN core 
 
The timestamp generator is an input to the 
CAN core, because all instances of the 
core must use the same timestamp. 
 
A global register file provides the number 
of cores in this FPGA to the driver, 
generates the timestamps for all cores, 
and informs the driver about the cores that 
needs attention. 
With this basic implementation, it is possi-
ble to send a CAN Frame and start its 
transmission with only four write access 
cycles to the controller, and to read a 
frame within six cycles, including two 
cycles for a 64 bit timestamp.  

An FPGA with this basic CAN core 
connected to a low latency local bus of 
PowerPC microprocessor is a very good 
solution for many embedded applications. 
 
 

 
 
Figure 4: CAN core in an FPGA 
  
Busmaster 
 
The bus master unit transfers CAN frames 
and “transmit done” or “transmit aborted” 
indications from the cores into the memory 
of the host system without the help of the 
host CPU. 

 
Figure 5: CAN core with bus master 
engine  
 
A Local CPU 
 
A local CPU can be very helpful for a CAN 
interface, that needs to cyclically send a 
lot of data. Adding a “soft” CPU to the core 
does not use too much resources in the 
FPGA, and it is usually much easier to 
implement more complex actions in a “C” 
program than in VHDL. Additionally 
changing the software for this CPU does 
not require the revalidation of the whole 
FPGA.   
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Figure 6: CAN core in a FPGA 
Adding a DDR-RAM Interface 
 
There are many possible applications for a 
large RAM within a CAN interface. It can 
be simply used as memory for a “soft” 
CPU or even as a “perfect” filter for all 29 
bit CAN identifier. 

 
Figure 7: Typical CAN interface  
 
PCI and PCI Express Interface 
 
It is easy to add a PCI or PCI Express 
core to an FPGA, to get a “CAN chip” with 
such an interface. As most state-of-the-art 
FPGA's are no longer 5 volt tolerant, and 
the PCI slots in modern PC's are still 
coded as 5 volt slots, this is no solution for 
a general market interface, but is a good 
solution for an embedded system. PCI 
Express interfaces do not have such 
restrictions.    
 
Resources Used in an FPGA 
 
The CAN core is used mostly in Xilinx 
FPGA's at the moment. It is possible to 
implement more than 12 CAN core's with 
bus master support in a Spartan 

XC3S1600E chip. Depending on the 
number of CAN interfaces needed, there 
are many resources left for a soft CPU and 
other advanced features. Implementations 
in combination with error injection or IRIG-
B have already been realized.  
 
Field Proven 
 
Nowadays, we are using the CAN core in 
many different products. The family of 
CAN/400 boards is build up of a PMC,  
Compact PCI, PCI and PCI Express 
board. These boards use the additional 
DDR RAM interface and also the PCI bus 
master engine. On the AMC-CAN board, 
there is no external RAM. The CAN core 
combined with a PCI Express endpoint in 
the FPGA is used on a custom board with 
an Intel ATOM CPU and a XMC board 
with a QorIQ P2041 quad core PowerPC 
microprocessor. Finally the basic 
configuration is used on our VME-CPU 
and other custom boards. 
 
Next Steps 
 
An error injection unit has already been 
added as an option to the CAN core.  
 
Future directions may be more diagnostic 
tools, like monitoring and recording of the 
CAN bit stream. 
 
Summary 
 
This paper describes a CAN controller,  
that is implemented as an IP core in an 
FPGA and overcomes the long access 
times  of standalone CAN controllers by 
implementing a 32 bit register interface 
and streaming the data from the CAN bus 
into the memory of the host CPU by bus 
master DMA. Deep FIFO sizes for reading 
and writing, precise timestamps and the 
ability to abort a CAN frame accurately, 
even if it is in the transmit FIFO (as need-
ed for more sophisticated CAN protocols 
like ARINC825) and a register model 
optimized for the needs of CAN, are 
additional features.  Depending on the 
selected features, up to twelve ACC  CAN 
cores fit into an Xilinx Spartan 
XC3S1600E FPGA. 
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