
iCC 2012 CAN in Automation

08-7

ACC, a Next Generation CAN Controller

Reinhard Arlt, esd electronic system design gmbh

Andreas Block, esd electronic system design gmbh

Tobias Höger, esd electronic system design gmbh

Most standalone CAN controllers available today are connected to the host system by
eight or sixteen bit wide parallel buses. Write and especially read accesses to such
peripheral devices are very slow compared with the cycle time of modern CPU's. This
paper discusses the resulting performance bottleneck and shows a solution, using a
CAN controller implemented in an FPGA, that can use bus master DMA.

Introduction

There are still no CAN controllers integrat-
ed into most high end microprocessor
chips and a common way to add CAN us-
ing these processors is simply to connect
one or more standalone CAN controllers to
such systems.

My co-workers and I have done a perfor-
mance analysis on an embedded system,
as we have found out, that the perfor-
mance of this system does not scale well
with increased CPU power.

Unfortunately we found out, that one of the
bottlenecks was a CAN interface build
around a SJA1000.

There are numerous eight bit accesses to
the chip necessary to handle one CAN
frame and most of these accesses are
done in the interrupt routine with each ac-
cess taking quite a while.

The Performance Bottleneck

The reason for this is that most available
standalone CAN controllers are designed
to work with relative low power microcon-
trollers.

The consequences are rather slow 8 or 16
bit wide interfaces. Interfacing such a
device to state-of-the-art CPU's results in

a performance bottleneck, as the CPU and
the system bus may be blocked for several

thousand cycles by a single access to one
register of the CAN controller.

The introduction of serial system buses
like PCI Express makes the situation even
worse, as these bus systems are op-
timized for streaming large blocks of data
from the device to the memory of the host
CPU and vice versa, while normal
standalone CAN controllers rely on single
byte accesses. The resource “System Bus
Interface” is blocked for the other threads
in the CPU core, that is used by the CAN
process, as well as for all other CPU
cores. Therefore you have to minimize
“read” accesses to the device, and all
“write” accesses should be posted, so the
CPU does not need to wait for the
completion of the accesses.

As an extreme example, the read access
to an 8 bit register of a CAN device
connected by PCI Express, may take up to
2000ns, and a 3 GHz CPU has to wait
here for 6000 clock cycles.

Today, as even PCI slots may be
connected with a PCI Express to PCI
bridge to the host CPU, a single byte
access to a PCI device is even slower due
to the additional delay of the PCI Express
to PCI bridge. Please note, while the
access time to the real device is less than
100ns long, the time is spent sending for
example a 160 bit long request packet to
the PCI Express Bridge, then waiting the
100ns device access time, and for replying
a 160 bit long answer packet from the PCI
Express Bridge to the CPU.

iCC 2012 CAN in Automation

08-8

A First Approach

At the time we detected this bottleneck,
about 10 years ago, we decided to use a
very small FPGA to poll the data from the
SJA1000 CAN controller, present them in
a 32 bit wide register within the FPGA to
the CPU and to transfer a CAN message
from 32 bit wide registers in the FPGA to
the SJA1000.

Figure 1: Supporting SJA1000 CAN
Interfaces with a small FPGA

As an additional feature, the CAN-ID, DLC
and data fields of the CAN frame were
now arranged in a way that is much more
convenient for a 32 bit processor. It was
possible now to handle the data transfer
on task level and not within the interrupt
service routine. Even this project was only
partially successful due to the limitation of
the affordable FPGA resources at that
time. The idea was born to implement a
high performance CAN controller in an
FPGA.

Technology used by Ethernet

Even computer systems with slower CPU's
can handle several Ethernet interfaces
without a significant CPU load, so why not
have a look, how a typical Ethernet
controller is build?
There are, for example, only very few
Ethernet controllers available today,
intended for the use in low end and low
performance applications, that rely on data
transfer done by the host CPU.

The majority uses an at least 32 bit wide
interface, and transfers the data directly to
and from the memory of the host CPU.

On the other hand, there are only a few
Ethernet controllers, that use a local CPU
to transfer data.

Why not use this well established
technology for a CAN controller, too?
Perhaps the market for a high end CAN
ASIC or custom chip is too small.

CAN Interfaces with Local CPU

In the past and still nowadays, these
problems are often mitigated by using
“active” CAN interfaces, where the CAN
controllers are connected to a local
microcontroller, or even are an integrated
part of that chip.

Figure 2: CAN Interfaces with a local CPU

If the local microcontroller of those
implementations has the possibility to
access the memory of the host CPU, it is
possible to mitigate the issue with long
access times quite well, but there is a new
problem: As these processors used here
are typically 10 times slower than the host
CPU's, they introduce a noticeable delay
between the transmit command of the
host CPU and the appearance of the CAN
frame on the CAN bus, and from the
physical reception of the CAN frame until it
is available to the host. This will increase
the turnaround time for protocols, that rely
on a direct answer from a device on that
CAN bus, for example when doing an
CANopen SDO transfer.

Use a CAN Controller with SPI Interface?

SPI (Serial Peripheral Interface) is a four
wire serial interface used for the connec-
tion of slower peripheral devices to a host
CPU. An additional wire for an interrupt is
typically needed to connect a CAN con-
troller.

iCC 2012 CAN in Automation

08-9

Many high end microprocessors that do
not have a CAN interface on chip provide
very powerful SPI interfaces with very
short access times. But due to slow SPI
clocks, known SPI CAN controllers like
Bosch CC750/CC770 or Microchip
MCP2515 use only 8 MHz or 10 MHz,
there will be again a significant delay intro-
duced for the transfer of the CAN
message.

The transfer of an 8 byte CAN frame with
the SPI interface may take more than 10
microseconds. Depending on the SPI
controller, there might be an interrupt for
every byte transferred to the CAN
controller, or the CAN driver has to poll for
the completion of the transfer of each byte.

The only remaining advantage is, that the
system bus is not blocked for other CPU's.

Develop our own CAN Core?

Before implementing a CAN core from
scratch, it should be good engineering
practice to check, if there are CAN cores
available, that meet the requirements and
the budget limits of the project.

With the knowledge gathered from the
development of CAN drivers for many
different CAN controllers, different
operating systems, host system
architectures and numerous CAN
applications, we had to accept, that there
is no CAN core available, that fulfills all
requirements, or where the supplier is
willing to modify his core for a reasonable
price and within the given timeline.

Again, we had to find out, that most of the
CAN cores in the market are only
designed for the use in simple CAN I/O
nodes.

Requirements

Our new CAN core must be compliant to
ISO 11898-1 (CAN 2.0A and CAN 2.0B)
and must support all relevant baud rates.

It must have a 32 bit wide interface, but it
should be possible to synthesize it for 16
bit or even 8 bit wide bus interfaces.

It must provide 64 bit wide timestamps
with a resolution of less than 1
microsecond.

There must be deep enough FIFO's for the
transmit and receive path, to allow the
usage within non real time systems.

The CAN core shall be able to generate
100% bus load. It must be able to receive
a long stream of CAN messages with zero
bytes of data without losing a message.

A “transmit done” or “transmit aborted”
indication must be placed in the receive
FIFO. This is necessary to inform the
driver and application software of the
exact sequence of the CAN frames on the
bus.

It must be possible to abort any transmit
request, that has not already won the bus
arbitration and to get an indication for this
event. This requirement is for example
necessary to implement protocols that
allow the transmission of a frame in a
predefined time slot only (e.g. ARINC825).

It must have a seamless interface to a
busmaster unit.

It must be possible to evaluate the CAN
baud rate of an active bus without a
significant delay and without any
disturbance of the CAN messages.

An interrupt status register has to be
implemented in a way, that allows a
minimum number of accesses in the
interrupt service routine, ideally no reads
and as minimal as necessary write
accesses.

It must be modifiable and extendable, the
HDL source code must be available, and
there should be no limitations in the use of
the core.

The core should be written in VHDL.

The core should support a second local
bus interface. This is necessary to allow a
host CPU and a local CPU to access the
same CAN bus. Although it would be
possible to use two distinct CAN cores for
the same pysical CAN interface, one for

iCC 2012 CAN in Automation

08-10

the local and one for the host CPU, such
an implementation would make it
impossible to send messages with the
same identifier from both CPUs.

The Basic CAN Core

The basic CAN core is built up from a CAN
bit stream engine, two FIFO memories and
a register file.

The bit stream engine constructs the
stuffed CAN message, arbitrates for the
bus, sends the message, adds the CRC
and framing bits and checks for
retransmission. It also receives the data
from the bus, does the CRC check, and
sends ACK and ERROR flags. The
handling of the CAN error states is
implemented here, too.

The register file is the interface to the driv-
er and it is connected to the bit stream en-
gine by the transmit and the receive FIFO.
It also provides the bit timing parameters
for the bit stream engine and reports the
status information from the bit stream
engine to the driver.

Figure 3: Basic CAN core

The timestamp generator is an input to the
CAN core, because all instances of the
core must use the same timestamp.

A global register file provides the number
of cores in this FPGA to the driver,
generates the timestamps for all cores,
and informs the driver about the cores that
needs attention.
With this basic implementation, it is possi-
ble to send a CAN Frame and start its
transmission with only four write access
cycles to the controller, and to read a
frame within six cycles, including two
cycles for a 64 bit timestamp.

An FPGA with this basic CAN core
connected to a low latency local bus of
PowerPC microprocessor is a very good
solution for many embedded applications.

Figure 4: CAN core in an FPGA

Busmaster

The bus master unit transfers CAN frames
and “transmit done” or “transmit aborted”
indications from the cores into the memory
of the host system without the help of the
host CPU.

Figure 5: CAN core with bus master
engine

A Local CPU

A local CPU can be very helpful for a CAN
interface, that needs to cyclically send a
lot of data. Adding a “soft” CPU to the core
does not use too much resources in the
FPGA, and it is usually much easier to
implement more complex actions in a “C”
program than in VHDL. Additionally
changing the software for this CPU does
not require the revalidation of the whole
FPGA.

iCC 2012 CAN in Automation

08-11

Figure 6: CAN core in a FPGA
Adding a DDR-RAM Interface

There are many possible applications for a
large RAM within a CAN interface. It can
be simply used as memory for a “soft”
CPU or even as a “perfect” filter for all 29
bit CAN identifier.

Figure 7: Typical CAN interface

PCI and PCI Express Interface

It is easy to add a PCI or PCI Express
core to an FPGA, to get a “CAN chip” with
such an interface. As most state-of-the-art
FPGA's are no longer 5 volt tolerant, and
the PCI slots in modern PC's are still
coded as 5 volt slots, this is no solution for
a general market interface, but is a good
solution for an embedded system. PCI
Express interfaces do not have such
restrictions.

Resources Used in an FPGA

The CAN core is used mostly in Xilinx
FPGA's at the moment. It is possible to
implement more than 12 CAN core's with
bus master support in a Spartan

XC3S1600E chip. Depending on the
number of CAN interfaces needed, there
are many resources left for a soft CPU and
other advanced features. Implementations
in combination with error injection or IRIG-
B have already been realized.

Field Proven

Nowadays, we are using the CAN core in
many different products. The family of
CAN/400 boards is build up of a PMC,
Compact PCI, PCI and PCI Express
board. These boards use the additional
DDR RAM interface and also the PCI bus
master engine. On the AMC-CAN board,
there is no external RAM. The CAN core
combined with a PCI Express endpoint in
the FPGA is used on a custom board with
an Intel ATOM CPU and a XMC board
with a QorIQ P2041 quad core PowerPC
microprocessor. Finally the basic
configuration is used on our VME-CPU
and other custom boards.

Next Steps

An error injection unit has already been
added as an option to the CAN core.

Future directions may be more diagnostic
tools, like monitoring and recording of the
CAN bit stream.

Summary

This paper describes a CAN controller,
that is implemented as an IP core in an
FPGA and overcomes the long access
times of standalone CAN controllers by
implementing a 32 bit register interface
and streaming the data from the CAN bus
into the memory of the host CPU by bus
master DMA. Deep FIFO sizes for reading
and writing, precise timestamps and the
ability to abort a CAN frame accurately,
even if it is in the transmit FIFO (as need-
ed for more sophisticated CAN protocols
like ARINC825) and a register model
optimized for the needs of CAN, are
additional features. Depending on the
selected features, up to twelve ACC CAN
cores fit into an Xilinx Spartan
XC3S1600E FPGA.

iCC 2012 CAN in Automation

08-12

References:
[1] ISO 11898-1, (December 2003): Road
vehicles – Controller area network (CAN)
– Part 1: Data link layer and physical
signaling.

[2] ISO 11898-2, (December 2003): Road
vehicles – Controller area network (CAN)
– Part 2: High-speed medium access unit.

[3] Etschberger, Konrad (2002): Controller-
Area-Network. Grundlagen, Protokolle,
 Bausteine, Anwendungen. München:
Hanser.

[4] Voss, Wilfred (2005): A
comprehensible guide to controller area
network: Copperhill Technologies
Corporation.

[5] Phillips Semiconductor (1997):
SJA1000. Stand-alone CAN Controller.

[6] Robert Bosch GmbH (2000): CC750
SPI-CAN.

[7] Robert Bosch GmbH (2009): CC770
Stand Alone CAN Controller.

[7] Microchip Technology Inc. (2010)
Stand-Alone CAN Controller With SPI
Interface.

[8] PCI-SIG (November 2010): PCI
Express Base Specifikation Revsion 3.0.

[9] Höger, Tobias (2002): Entwurf, Aufbau
und Test eines busmasterfähigen CAN-
Interfaces für CompactPCI-Systeme.

[10] Webermann, Hauke (2011): Entwurf,
Implementierung und Test einer
Funktionseinheit zur Injektion von Fehlern
in CAN-Busse.

Reinhard Arlt
esd electronic system design gmbh
Vahrenwalder Str. 207
D-30165 Hannover
+49-511-37298-0
+49-511-37298-68
reinhard.arlt@esd.eu
www.esd.eu

Andreas Block
esd electronic system design gmbh
Vahrenwalder Str. 207
D-30165 Hannover
+49-511-37298-0
+49-511-37298-68
andreas.block@esd.eu
www.esd.eu

Tobias Höger
esd electronic system design gmbh
Vahrenwalder Str. 207
D-30165 Hannover
+49-511-37298-0
+49-511-37298-68
tobias.hoeger@esd.eu
www.esd.eu

