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In this article, we present a new method for describing CANopen network topology. A 
new format using GraphML, an XML-based graph format, is introduced. By using a 
subset of GraphML along with CANopen-specific new elements and attributes, 
topology of single as well as multiple CANopen networks can be captured in a well 
established graph format with existing tool support. The new format is specified in a 
manner that allows CANopen design applications to adopt it while providing a 
mechanism for fallback in unsupported software. Methods for extending the format to 
contain other CAN- and CANopen-specific data as well as transforming the GraphML-
based network structure to other formats are described. Finally, the implications of 
the introduced method and format are discussed.  

1. Introduction and Background  

When designing mobile machines in 
practice, multiple CANopen networks may 
need to be used. What may then become 
problematic is that the current CANopen 
design programs and specification support 
only description of individual CANopen 
networks. Specificially, formats and 
applications for specifying topology 
between and within networks. 
From stricly practical point of view, this 
may not be problematic. If one wishes, 
however, to re-use information from 
CANopen designs, becomes integration of 
topology information with other CANopen 
data cumbersome: we not only need to 
know in which format the topology 
information is encoded in, but also need to 
create adapters that (programmatically) 
combine topology information with other 
CANopen data. In addition, well-defined 
points for schema extensions are missing. 
Our motivation for enriching CANopen 
designs with network topology information 
stems from Semogen project. In Semogen 
research project, we have attempt to 
(semi-)automatically generate virtual 
prototypes, i.e. virtual machine 
laboratories (VMLs), directly from design 
data [11, 12, 13, 14]. Within a VML, it is 
useful to represent CANopen network in 
visual, graph-like format, where nodes are 
represented as graph nodes and  

connection between the nodes as edges in 
a graph. However since the specific 
structure within and between nodes is not 
defined in actual design data, some 
structure needs to be generated for the 
purposes of visualization. This is 
problematic since the visualized structure 
may or may not correspond to the actual 
structure of the network. For accurately 
representing CANopen network structures, 
we would require to have network 
topologies defined in design materials, in 
some common format. 
In a more broader level, an important use 
case for network topology information re-
use is CANopen network monitoring and 
troubleshooting. By enriching for instance 
onboard device monitors with this 
structural information, more informative 
system monitoring tools can be 
implemented. 
From the current formats, the most 
promising candidate for a point of 
enrichment is nodelist.cpj. As defined by 
CiA-306-3 [7], nodelist.cpj has the main 
purpose of providing either network or 
system level structural information and link 
to appropriate DCF- [16] or XDC-files[17]. 
What is limiting is that the current format 
only allows description of individual 
CANopen networks. DCF-files can be 
linked to nodes and further to the network, 
but only locally within a given network. The 
format also doesn't enable us to describe  
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in which order nodes are physically 
connected. 
A current effort towards enriching 
CANopen designs with topology 
information exist. CiA-302-7 Draft specifies 
signal routing in gateway nodes, enabling 
us to track signals between multiple 
CANopen networks [10]. However, even 
with CiA-302-7 we still do not have 
information about topology of the 
underlying CANopen networks; the way in 
which the nodes are connected within 
specific CANopen networks still remain 
unspecified.  

2. Nodelist representation with GraphML  

In this chapter we introduce GraphML and 
define a GraphML-based format for 
representing nodelists with topology 
information.This Nodelist.graphml 
format[9] has also been proposed to 
CiA.The proposal will add to the future 
CiA-311 system structure information, 
which has been integral part of the CiA-
306 defining the old design files.  

2.1. GraphML  

GraphML (Graph Markup Language) is an 
XML (eXtensible Markup Language) 
format for graph structures and has a 
mechanism that allows to define extension 
modules for additional data [2]. GraphML 
is well suited for data interchange,   
because its extension modules allow 
application specific-data to be added that 
can be combined or stripped without 
affecting the graph structure. [1, p.1] This 
way additional data can be ignored by 
programs not supporting it without 
affecting the graph data itself. 
GraphML was designed with simplicity, 
generality, extensibility and robustness in 
mind. Because of this, the format is easy 
to parse and interpret and has no 
limitations with respect to the graph model. 
GraphML-based formats can be extended 
with well-defined way to represent 
additional data and application not capable 
of supporting this added data can ignore it 
or extract the subset they can handle [1, 
p.3]. 
Format in GraphML is based on XML [2] 
so there are readily available parsers and 
tools for it. Also XML enables us to use  

additional features like Namespaces [3] or 
XLink [4] inside a GraphML document. In 
this way, a format can be extended with 
features required by custom applications. 
Structural layer of GraphML describes the 
fundamental graph model, which is mixed 
multigraph and may, but is not required to, 
include nodes, ports, edges, hyperedges 
and nested graphs [1, p-4]. In figure 2.1.1. 
we have simple GraphML example file. It 
has one graph, but GraphML-format may 
also include multiple graph elements. 
Graph-element has mandatory attribute 
edgedefault, which specifies whether 
edges are directed or undirected by 
default. Graphs may contain any number 
of nodes, edges and hyperedges in any 
order. In the example we have four nodes 
and three edges, but no ports or 
hyperedges.  
 
<?xml version="1.0" encoding="UTF-8"?> 

<graphml 
xmlns="http://graphml.graphdrawing.org/xmlns" 
   xmlns:xsi= 
"http://www.w3.org/2001/XMLSchema-instance" 
   xsi:schemaLocation= 
"http://graphml.graphdrawing.org/xmlns 
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xs
d"> 
 
  <!-- System description graph (single network) -->  
  <graph id="RootNetwork" edgedefault="undirected">  
    <node id="Device_A"/> 
    <node id="Device_B"/> 
    <node id="Device_C"/> 
    <node id="Device_D"/> 
 
    <!-- Network connections -->  
    <edge source="Device_D" target="Device_A"/> 
    <edge source="Device_D" target="Device_B"/> 
    <edge source="Device_D" target="Device_C"/> 
  </graph> 
</graphml> 

Figure 2.1.1. Simple GraphML example file, 
which includes graph, nodes and edges.  

Port is part of a node to which edges may 
attach. Ports appear as nested 
subelements of node. Ports may also 
include other ports. 
Edges connect ports or nodes together. 
Edge has source and target node, 
regardless of whether it is directed or not. 
Edges may also have sourceport and 
targetport if it is used to connect ports. 
Edges optional attribute directed can 
overwrite graphs edgedefault value for 
current edge. 
Hyperedge is a special case of an edge  
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which can have multiple endpoints. Each 
endpoints' direction can be defined as in, 
out or neither. Endpoints refer to nodes 
and may also refer to ports.  

2.2 GraphML extensions 

Extensions provide a method for defining 
additional data and can also provide typing 
information for it. This additional data in 
GraphML is defined with the help of key 
and data elements [1, p8]. A key element 
is used for typing and naming the data and 
the data element is for containing actual 
data value. Every data element has to be 
linked to ca orresponding key element with 
id attributes in key and data elements. 
Multiple data elements should refer to a 
common key element's id, if they all 
contain same type of data. 
So data typing is done in key element. 
These elements can be defined in the 
beginning of a GraphML file. In figure 2.3.2 
we see an example of key element 
definitions in use. Key element has id 
attribute, which has to be unique and is 
used to link data element to this key 
element. Further, for attribute defines what 
elements (graph, node, edge, port, etc.) 
can contain this type of data. Purpose of 
the attr.name attribute is to identify the 
meaning of the key attribute and it has to 
be unique, but it is not used inside the 
document to refer to key attribute [8]. The 
attr.type attribute defines the type of the 
data and can be either boolean, int, long, 
float, double or string. These types are 
defined like corresponding types in the 
Java programming language [8]. 
Data values are defined in a data element, 
which is located inside graph, node, edge 
or some other element defined in a key 
element's for attribute. In our example a 
data element is located inside graph 
element as seen in figure 2.3.3. A data 
element's key attribute refers to key 
element's id attribute, so we can have 
typing of our information. The actual value 
for the data is defined as content of the 
element. In this case we have property 
background, which has value of 
lin_back.bmp as illustrated by figure 2.3.3. 
Additionally we can see that in 
corresponding key element (in figure 
2.3.2) the background property can be 

defined for graphs and has to be in string 
format. 

2.3. Nodelist.graphml format 

The existing format, nodelist.cpj (figure 
2.3.1), represents only nodes within one 
CANopen network and contains no 
topology information. The format only 
allows listing the existing nodes, their 
DCF-files [16] and names. Yet, having 
topology information and an overview to 
the whole CANopen system would be 
useful for maintenance and 
troubleshooting and can be used for 
creating different views of the network or 
create semantic models of it. Therefore we 
specified new format, Nodelist.graphml [9], 
which has also been proposed to CiA as a 
draft.  
 
[Topology] 
EDSBaseName=EDS #optional 
NetName=DefaultNet #optional  
Nodes=0x02  
Node2Present=0x01  
Node2DCFName=demo_plc.dcf  
Node2Name=DemoNode_A #optional  
Node3Present=0x01  
Node3DCFName=demodeva.dcf  
Node3Name=DemoNode_B #optional 

Figure 2.3.1. Two node network description in 
nodelist.cpj format. 

GraphML provided existing solution for 
describing graphs in XML based format. It 
was designed as a data interchange 
format for graphs and associated data. It 
also allows defining of extension modules 
for additional data, in this case node and 
network information. This additional data 
does not affect the basic structure of 
GraphML and information can be added in 
well-defined way. Even with additional 
information, GraphML format is still 
readable and editable in programs that 
support it. They can present the graph 
information and leave additional data 
unchanged. Additional information is 
decribed with <key> and <data> tags. 
We chose one graph to represent whole 
CANopen system with multiple CANopen 
networks. Another solution was 
considered, where one graph would 
represent only one CANopen network. In 
this solution a node would present one 
CAN node and therefore if one physical  
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CAN device is connected in multiple CAN 
networks, it would have had separate 
nodes in every network's graph.This 
solution was abandoned due to complexity 
and the lack of support for multigraphs in 
GraphML tools. In one graph per whole 
system solution, one node would also 
represent one physical CANopen 
device.This creates the need for having to 
redefine per network attributes in 
associated each nodes. 
Because the defined GraphML format 
presents a whole CANopen system and all 
networks in it, we can attach common 
attributes to it. To this date, we have 
defined two attributes [9] at the beginning 
of a Nodelist file (see figure 2.3.2) These 
attributes are attached to graph element 
which presents the whole system (see 
figure 2.3.3.). EDSBaseName decribes the 
path to directory which contains EDS 
files[16]. Background attribute is optional 
and can be used for background image for 
visualization purposes (for details, see 
section 3.2 and figure 3.2.2).  
 
<!-- Attribute definitions for element <graph> --><key 
id="EDSBaseName" for="graph" 
attr.name="EDSBaseName" attr.type="string" /> 
<key id="Background" for="graph" 
attr.name="Background" attr.type="string" /> 

Figure 2.3.2. Global parameters defined to 
graphs. 
<graph id="RootNetwork" edgedefault="undirected">  
<data key="EdsBaseName">EDS</data> 
  <data key="Background">lin_back.bmp</data> 
  <!-- nodes and edges are defined here --> 
</graph> 

Figure 2.3.3. Setting values to global 
parameters in graph-element.  
<node id="N003">  <data 
key="NodeName">DemoNode_C</data> 
  <data key="NodeType">device</data> 
  <data key="NodeFig">testnode.bmp</data> 
  <data key="X">220</data> 
  <data key="Y">20</data> 
  <data key="NumOfNets">1</data> 
  <!-- ... --> 
</node> 

Figure 2.3.4. Device specific parameters 
defined to nodes.  
<edge id="E002" source="N001" target="N003"> 

  <data key="NetNumber">7</data> 
  <data key="CableName">W5002</data> 
  <data key="Length">500</data> 
  <data key="LineType">line</data> 
  <data key="LineParams"></data> 
</edge> 

Figure 2.3.5. Connection specific parameters 
defined to edges.  
<node id="N003"> 

  <!-- ... --> 
  <data key="NetNumberN1">1</data> 
  <data key="NetworkNameN1">DefaultNet</data> 
  <data key="NodeIDN1">4</data> 
  <data key="NodeDCFNameN1">demodevb.dcf</data> 
  <data key="SupplyDomainN1">Primary</data> 
  <data key="SupplyPointN1">0</data> 
 
  <data key="NetNumberN2">7</data> 
  <data key="NetworkNameN2">AdditionalNet</data> 
  <data key="NodeIDN2">6</data> 
  <data 
key="NodeDCFNameN2">demodevb2.dcf</data> 
  <data key="SupplyDomainN2">Primary</data> 
  <data key="SupplyPointN2">0</data> 
</node> 

Figure 2.3.6. Network specific parameters 
defined to nodes. 

 

2.4 Discussions 

Hyperedges were considered as a way to 
describe connections between different 
CANopen networks. The idea was that 
one hyperedge would join same physical 
CAN device in different CANopen 
networks. But the lack of support for 
hyperedges in GraphML editing tools and 
added complexity got the idea abandoned. 
Instead, multiple key values like 
NetNumberNx were defined for nodes with 
multiple network connections (as in figure 
2.3.6) where x describes network number. 
Another alternative solution was to use 
ports as per network connection in nodes. 
Ports are defined inside the node. This 
idea has few advantages over using 
NetNumberNx style definition. Firstly, 
network-specific parameters can be 
defined in port so there is no need for 
multiple definitions of a same parameter. 
For nodes that have multiple different 
network connections, multiple ports can be 
used. One for each different network. 
This way a schema would be constant for 
all nodelist.grapml files with any number of 
networks. Also for example NodeID is 
always found in NodeID named parameter 
and not NodeIDNx parameter where x can 
be anything. Validation of this type of 
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format is much easier and filtering or 
visualizating the network according to 
parameter specific properties is also much 
less complicated. Two network example of 
using port for per-network parameters is 
presented in figure 2.4.1. 
This idea although it was simpler as a 
format was abandoned due to the lack of 
port support in GraphML tools and 
libraries.  
<!-- ... --> 

<port id="P01"> 
  <data key="NetNumber">1</data> 
  <data key="NetworkName">DefaultNet</data> 
  <data key="NodeID">4</data> 
  <data key="NodeDCFName">demodevb.dcf</data> 
  <data key="SupplyDomain">Primary</data> 
  <data key="SupplyPoint">0</data> 
</port> 
<port id="P02"> 
  <data key="NetNumber">7</data> 
  <data key="NetworkName">AdditionalNet</data> 
  <data key="NodeID">6</data> 
  <data key="NodeDCFName">demodevb2.dcf</data> 
  <data key="SupplyDomain">Primary</data> 
  <data key="SupplyPoint">0</data> 
</port> 
<!-- ... --> 

Figure 2.4.1. Network specific parameters 
defined to ports. 

3. Application Examples 

In this chapter we present examples of 
applying the specified format in two use 
cases: network visualization in existing 
applications and a generic system 
monitoring view implemented in a real 
control system. 

3.1. Network Visualization 

Since Nodelist.graphml format is 
GraphML-based, existing GraphML 
applications and libraries such as 
Graphviz, yEd, Gephi, igraph and 
networkx can be used for purposes of 
network visualization. 
Two examples of network visualization 
with Gephi are considered: 1) visualization 
of network topology within a single 
network, and 2) visualization of multiple 
networks their connections. 
First, let us consider a single star topology 
network as defined in section 5.3 of the 
format specification [9]. In this given 
example, we have a switch - or a hub - 
acting as a centre point of a physical 
network, without isolating the branches 
logically. A DCF file is assigned to the  

switch, because it is assumed to be a 
managed switch. This network has been 
formally defined in GraphML as according 
to the corresponding listing [9]. 
Figure 3.1.1. presents visualization of this 
network in Gephi. Visual parameters are 
derived as follows: node positions are read 
from GraphML (X and Y data fields), 
Gephi is configured to display node and 
edge titles (NodeName and CableName 
data fields). Nodes are represented using 
Sphere 3d shape. Note that the 
visualization demonstrates only one 
possible way of re-using network data 
from a GraphML nodelist - other data 
fields could have been chosen for visual 
mapping as well. 
 

 

Figure 3.1.1. Visualization of single star-
topology network with Gephi. 
 
Secondly, let us consider how a topology 
of a multi-network CANopen system could 
be visualized. Consider a minimal example 
in which two nodes, DemoNode _B and 
DemoNode _C have been connected 
together by a gateway node DemoNode 
_A. Such a network has two separate 
CANopen networks where the gateway 
node is a device in the both of these. 

 



iCC 2012  CAN in Automation 
 

06-16 

Figure 3.1.2. Multi-network CANopen 
system visualization with Gephi  

3.2. System Monitoring 

In this section, we will briefly introduce 
implementation of a system monitoring 
view, which is one of the most important 
parts in each distributed control system 
GUI, that utitilized the core features of the 
Nodelist.graphml format. The specifics of 
the implementation are somewhat 
extensive and outside the scope of this 
work and thus, are not being introduced. 
 
For actual working machines, it is benefial 
to provide tools for system monitoring. 
System monitoring enables us to 
understand the status of CANopen 
devices in a system, for instance in 
attempt to troubleshoot problems within it. 
In figure 3.2.1, a device monitor view in a 
system GUI is illustrated. All information 
used by the view are directly exported 
from a corresponding CANopen project. 
Due to limitations of nodelist.cpj file, only 
system name, device names and states 
can be presented without any relation to 
the system layout. Cable breaks are 
among the most common failures, but any 
connection analysis can not be performed 
without more specific information on the 
system's structure. 

  
Figure 3.2.1. Onboard device monitor 
based on information from nodelist.cpj. 
 

In figure 3.2.2, an alternative system 
monitor application utilizing data from a 
Nodelist.graphml file is presented. 
Following the topology information, we can 
now model actual connections between 
specific devices in the network. With such 
enrichment, troubleshooting can be 
improved by drawing the device status 
indicators in the correct locations on the 

system outline. For instance, if based on 
the network status, we see that specific 
block of devices are offline, topology 
information can be used together with the 
status to deduce locations of problems in 
physical wiring.  

 

Figure 3.2.2. Onboard system monitor 
based on information from 
nodelist.graphml. 

In addition to the GraphML-based 
topology, we also added a 2D visualization 
of the associated machine structure. By 
doing so we help the device monitor's user 
to physically locate devices and their 
connections and associated problems. 
Depending on the system complexity and 
available information, 2.5D background 
image (similar to what is implemented in 
SmartSimu Harvester Learning 
Environment Prototype [18]), could be 
used as well for potentially more insightful 
visualization. 

3.3. Discussion 

In this subsection, we demonstrated how 
Nodelist.graphml, a GraphML-based 
nodelist format, can be used to visualized 
structure and parameters of CANopen 
networks with Gephi visualization tool. 
In comparison to data from only 
nodelist.cpj, a GraphML-based format 
enabled us to create richer visualizations 
of CANopen networks. Most notably, 
actual network topology information could 
be encoded into the visualizations. 
The extent in which GraphML features are 
supported is tool-specific. If a given 
feature is missing in an application we are 
required to use, XML transformations such 
as XSLT could be used for format 
conversions. By extending this approach 
to non-GraphML output formats, support 
for some other, arbitrary visualization tools 
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could be added. Specifically, with a 
GraphML to SVG (Scalable Vector 
Graphics) conversion, support for web 
browser-based Nodelist.graphml viewing 
could be added. 
Further and as presented, we have 
successfully applied Nodelist.graphml data 
for enrichment of a system monitoring tool. 
With the help of the topology information, 
more sophisticated system monitoring 
view could be implemented. A requirement 
for the presented, enriched device monitor 
is that connections between nodes as well 
as their coordinates in relation to the 
machine, have been defined in the 
GraphML data. Ideas for further improving 
the monitor include representing midpoints 
in edges illustrating cable routings within 
the machine. Additionally, properties of 
power supply could be added to the 
GraphML data for enabling even more 
fine-grained troubleshooting capatibilies. 

4. Conclusions 

In this article, we presented a new method 
for describing CANopen network topology. 
A new format using GraphML, an XML-
based graph format, was introduced. By 
using a subset of GraphML along with 
CANopen-specific new elements and 
attributes, topology of a single as well as 
multiple CANopen networks could be 
captured in a well established graph 
format with existing tool support. The new 
format was specified in a manner that 
allows CANopen design applications to 
adopt it while providing a mechanism for 
fallback in unsupported software. Methods 
for extending the format to contain other 
CANopen-specific data as well as 
transforming the GraphML-based network 
structure to other formats were also 
described. Two specific usage examples, 
visualization and system monitoring tool 
implementation, were also described and 
discussed. 
In terms of applicability, the specified 
Nodelist.graphml format is promising. We 
have demostrated that the format and 
associated usage method are applicable 
to actual design data and informatin re-use 
use cases. Yet, some further work needs 
to be done in terms of finalizing the 
GraphML-based nodelist format, as well 

as further demostrating its applicability in 
practical use cases.  
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