Features of CiA 447 Application profile for special-purpose car add-on devices

Olaf Pfeiffer, Embedded Systems Academy GmbH

The trend to add more distributed electronics to applications also applies to taxis, emergency response vehicles, governmental vehicles and cars with special controls for handicapped drivers. However, in modern cars it becomes more and more difficult to add electronics, as build-in electronics and airbags are a closed system and all space around the dashboard is occupied. Access to the internal vehicle networks (IVN) is a delicate matter. For safety reasons, the car manufacturers are reluctant to allow direct access to "everyone".

CiA447 defines an open vehicle network with which car manufacturers provide limited access to their internal networks. As all accesses go through a gateway, the gateway can limit the access to those parameters considered "safe". As an example, where supported, buttons and displays of the car can be used by CiA 447 devices. However, the ultimate control remains within the car. In an emergency situation, the car could still override / overwrite the display with required warnings.

To allow easy and simple network connections, a standard connector, extended plugand-play mechanisms as well as power-down and wake-up controls are defined.

Overview of the functionality provided by CiA 447

On the physical side, CiA 447 specifies to use ISO11898–2. The CiA 447 devices use an 18-pin VDA interface connector that provides up to 4A power and access to the CAN_L and CAN_H lines. An optional 2-pin 16A power connector is defined for devices requiring more than 4A. Other optional signals include things like ignition (KL15), speed pulse signal, PTT – Push-To-Talk signal and audio signals. The CAN bit rate is set to 125 kbit/s.

Figure 1: 18-pin VDA interface connector

On the logical side, a CiA447 network is

limited up to 16 nodes (versus up to 127 in CiA301 CANopen) allowing for a full SDO mesh implementation with one SDO channel from every node to every node. This requires a custom pre-defined connection set, the CAN message identifiers used for these SDO channels are different from the CiA 301 default. As a result, regular CiA 301 devices such as generic I/O modules do not work in a CiA 447 network, all nodes in a CiA 447 network must be CiA 447 compliant.

The node ID 1 (one) is reserved for and must be used by the gateway. A gateway is mandatory for a CiA447 system to operate, as it is responsible for the network management including detecting and starting nodes. Typically the gateway is provided by the car manufacturer, however, there are also generic gateway solutions that connect to the OBD-II interface of a car to allow the connection of CiA447 compatible devices.

In comparison to "regular" CiA301 CANopen, CiA447 has a few functions, protocols and techniques to satisfy the specific application requirements:

 a high level of plug-and-play functionality

- numerous virtual devices (in V2.0 up to 128)
- signals contain status information
- direct SDO communication between all nodes
- sharing and locking of limited resources, like displays

In the following paragraphs these features are explained.

High level of plug-and-play functionality

One of the early requests for the Taxi application was, that it must be possible to quickly exchange components. Drivers need to be able to do this (like replacing a printer) without requiring the help of a specially trained technician.

This functionality was provided bv enhancing LSS the (Laver Setting Services) protocols of CiA305 with the "Fast Scan" protocol. The enhancements allow scanning for unconfigured nodes based on their LSS-ID (128bit device ID from Object Dictionary entry 1018h). Detecting a single node and assigning it a node ID takes less than two seconds using the Fast Scan protocol.

The plug-and-play support in CiA447 is the gateway's responsibility. It detects nodes, assigns node IDs and monitors heartbeat messages to do so.

A known limitation of the plug-and-play support comes from devices with a fixed node ID, which in general are allowed in CiA447. If devices with fixed node IDs are used, the person doing the "plugging" is responsible for ensuring that no other device on the network is currently using a node ID that is already present on the network.

True plug-and-play is therefore only available for those devices supporting the LSS Fast Scan protocols.

Extensive use of Virtual Devices

The concept of using Virtual Devices is essential to CiA447. Initially only up to 32 virtual devices were supported. Since V2.0 of CiA 447 the number of bits used to define virtual devices was extended to support up to 128. These are located in the Object Dictionary at index 6000h at the subindexes one to four.

These entries are one of the first read by communication partners, to determine which node implements what and which resources are available where. As an example, a roof bar controller would check which nodes implement roof bars and from then on focus on the communication with that device, ignoring others.

Virtual device	Туре
IVN gateway class 0	Gateway
IVN gateway class 1	Gateway
IVN gateway class 2	Gateway
IVN gateway class 3	Gateway
Fire extinguishing system	Device
Emergency fresh-air system	Device
Power supply	Device
Discrete inputs	Device
Terminal	Device
GPS	Device
Navigation system	Device
Taximeter	Device
Printer	Device
Real time clock (RTC)	Device
Driver identification	Device
Tariff display	Device
Taxi alarm system	Device
Radio	Device
Audio switch	Device
Roof bar light	Device
Roof bar sound	Device
"Blue" light flasher module	Device
Roof bar controller	Controller
Radio controller	Controller
Handicap controller	Controller
Radio hand-free conversation	Device
Tester/tool	Tester
Information signaler	Device
Video	Device
Data recorder	Device
Switch keypad	Generic device
Input output switch	Generic device
Engine control	Device
Active speed control	Device

Figure 2: list of virtual devices

Signals contain status information

In CiA447 signals that normally only have a binary on and off state use two bits to represent a total of four states:

- 00 off
- 01 on
- 10 failure
- 11 signal not available

As a result, consumers of such signals can directly determine if the signal is valid without requiring an extra parameter or mechanism.

A similar setup has been implemented for analog values. In an analog value, all bits set stand for "signal not available" and all bits set minus one for "failure".

For example, object 605Ah defines the displayed vehicle speed using a 16bit value. The value range is from 0 to 0FFEh representing 0.1 local distance unit per hour. Values 0FFFh to FFFDh are reserved, FFFEh stands for failure and FFFFh for signal not available.

Direct node-to-node SDO communication: SDO mesh

In CiA447 each node has 15 or 16 SDO server and 15 SDO clients, allowing each node to send direct SDO requests to any other node. This allows CiA447 devices to independently scan the network for communication partners and get direct access to all their Object Dictionary, not limited to data that is mapped into PDOs.

For the pre-defined connection set (how CAN message identifiers are used for SDOs and PDOs) this means that 480 CAN identifiers (of 2048 available) are used to provide these communication channels. Table 1 and 2 of CiA447-4 show which CAN identifiers are used.

Node- ID	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16
C1	-	241 _h	242 _h	243 _h	244 _h	245 _h	246 _h	247 _h	248_{h}	249 _h	$24A_{h}$	$24B_{h}$	$24C_{h}$	$24 D_{h}$	$24E_{h}$	$24F_{h}$
C2	250 _h	-	252 _h	253 _h	254 _h	255 _h	256 _h	257 _h	258 _h	259 _h	$25A_{h}$	$25B_{h}$	$25C_{h}$	$25 D_{h}$	$25E_{h}$	$25F_{h}$
C3	260 _h	261 _h	-	263 _h	264 _h	265 _h	266 _h	267 _h	268 _h	269 _h	$26A_{h}$	$26B_{h}$	$26C_{h}$	$26 D_{h}$	$26E_{h}$	$26F_{h}$
C4	270_{h}	271 _h	272 _h	-	274_{h}	275_{h}	276 _h	277 _h	278_{h}	279_{h}	$27A_{\rm h}$	$27B_{h}$	$27C_{h}$	$27 D_{\rm h}$	$27 E_{h}$	$27F_{h}$
C5	340_{h}	341 _h	342_{h}	343_{h}	-	345_{h}	346 _h	347 _h	348_{h}	349_{h}	$34A_{h}$	$34B_{h}$	$34C_{h}$	$34 D_{\rm h}$	$34E_{h}$	$34F_{h}$
C6	350 _h	351 _h	352 _h	353 _h	354 _h	-	356 _h	357 _h	358 _h	359 _h	$35A_{h}$	$35B_{h}$	$35C_{h}$	$35 D_{h}$	$35E_{h}$	$35F_{h}$
C7	360 _h	361 _h	362 _h	363 _h	364 _h	365 _h	-	367 _h	368 _h	369 _h	$36A_{h}$	$36B_{h}$	$36C_{h}$	$36 D_{h}$	$36E_{h}$	$36F_{h}$
C8	370 _h	371 _h	372 _h	373 _h	374 _h	375 _h	376 _h	-	378 _h	379 _h	$37A_{h}$	$37B_{h}$	$37C_{h}$	$37 D_{h}$	$37E_{h}$	$37F_{h}$
C9	440_{h}	441 _h	442 _h	443_{h}	444 _h	445_{h}	446 _h	447 _h	-	449 _h	$44A_{h}$	$44B_{h}$	$44C_{h}$	$44 D_{h}$	$44 E_{h}$	$44F_{h}$
C10	450 _h	451 _h	452 _h	453 _h	454 _h	455 _h	456 _h	457 _h	458 _h	-	$45A_{h}$	$45B_{h}$	$45C_{h}$	$45 D_{h}$	$45E_{h}$	$45F_{h}$
C11	460 _h	461 _h	462 _h	463 _h	464 _h	465 _h	466 _h	467 _h	468 _h	469 _h	-	$46B_{h}$	$46C_{h}$	$46 D_{h}$	$46E_{h}$	$46F_{h}$
C12	470_{h}	471 _h	472 _h	473_{h}	474 _h	475_{h}	476 _h	477 _h	478_{h}	479_{h}	$47A_{\rm h}$	-	$47C_{h}$	$47 D_{h}$	$47 E_{h}$	$47F_{h}$
C13	540 _h	541 _h	542 _h	543 _h	544 _h	545 _h	546 _h	547 _h	548 _h	549 _h	$54A_{h}$	$54B_{h}$	-	$54 D_{h}$	$54E_{h}$	$54F_{h}$
C14	550 _h	551 _h	552 _h	553 _h	554 _h	555 _h	556 _h	557 _h	558 _h	559 _h	$55A_{h}$	$55B_{h}$	$55C_{h}$	-	$55E_{h}$	$55F_{h}$
C15	560 _h	561 _h	562 _h	563 _h	564 _h	565 _h	566 _h	567 _h	568 _h	569 _h	$56A_{h}$	56B _h	$56C_{h}$	$56D_{h}$	-	$56F_{h}$
C16	570 _h	571 _h	572 _h	573 _h	574 _h	575 _h	576 _h	577 _h	578 _h	579 _h	$57A_{h}$	$57B_{h}$	$57C_{h}$	$57 D_{h}$	$57E_{h}$	-

Table 1 — SDO CAN-IDs for request client \bigcirc to server (S)

Node- ID	S1	S2	S3	S4	S5	S6	S 7	S8	S9	S10	S11	S12	S13	S14	S15	S16
C1	-	$1C1_{h}$	$1C2_{h}$	$1C3_{h}$	$1C4_{h}$	$1C5_{h}$	$1C6_{h}$	1C7 _h	$1C8_{h}$	$1C9_{h}$	$1CA_{h}$	$1CB_{h}$	$1 C C_{h}$	1CD_{h}	$1CE_h$	1CF_{h}
C2	1D0 _h	-	$1D2_{h}$	$1D3_{h}$	$1D4_{h}$	$1D5_{h}$	$1D6_{h}$	1D7 _h	$1D8_{h}$	$1D9_{h}$	$1 \mathrm{DA}_{\mathrm{h}}$	1DB_{h}	1DC_{h}	$1 D D_{h}$	1DE_{h}	$1 \mathrm{DF}_{\mathrm{h}}$

C3	1E0 _h	1E1 _h	-	$1E3_{h}$	$1E4_{h}$	$1E5_{h}$	$1E6_{h}$	1E7 _h	$1E8_{h}$	$1E9_{h}$	1EA_{h}	1EB_{h}	1EC_{h}	1ED_{h}	1EE_{h}	1EF_{h}
C4	$1F0_{h}$	$1F1_{h}$	$1F2_{h}$	-	$1F4_{h}$	$1F5_{h}$	$1F6_{h}$	$1F7_{h}$	$1F8_{h}$	$1F9_{h}$	$1 \mathrm{FA}_{\mathrm{h}}$	$1FB_{h}$	$1FC_{h}$	$1 FD_h$	$1 \mathrm{FE}_{\mathrm{h}}$	$1FF_{h}$
C5	2C0 _h	$2C1_{h}$	$2C2_{h}$	$2C3_{h}$	-	$2C5_{h}$	$2C6_{h}$	$2C7_{h}$	$2C8_{h}$	$2C9_{h}$	2CA_{h}	$2CB_{h}$	$2CC_{h}$	2CD_{h}	2CE_{h}	$2CF_{h}$
C6	2D0 _h	2D1 _h	$2D2_{h}$	$2D3_{h}$	$2D4_{h}$	-	$2D6_{h}$	$2D7_{h}$	$2D8_{h}$	$2D9_{h}$	$2 \mathrm{DA}_\mathrm{h}$	2DB_{h}	2DC_{h}	2DD_{h}	2DE_{h}	$2 \mathrm{DF}_{\mathrm{h}}$
C7	2E0 _h	2E1 _h	$2E2_{h}$	$2E3_{h}$	$2E4_{h}$	2E5h	-	2E7 _h	2E8h	2E9 _h	$2EA_h$	$2 E B_h$	$2 E C_h$	2ED_{h}	2EEh	2EF_{h}
C8	$2F0_{h}$	$2F1_{h}$	$2F2_{h}$	$2F3_{h}$	$2F4_{h}$	$2F5_{h}$	$2F6_{h}$	-	$2F8_{h}$	$2F9_{h}$	$2 \mathrm{FA}_{\mathrm{h}}$	$2FB_{h}$	$2FC_{h}$	$2 FD_{h}$	2FE_{h}	$2FF_{h}$
C9	3C0 _h	3C1 _h	$3C2_{h}$	$3C3_{h}$	$3C4_{h}$	$3C5_{h}$	$3C6_{h}$	$3C7_{h}$	-	$3C9_{h}$	$3CA_{h}$	$3CB_{h}$	$3CC_{h}$	3CD_{h}	$3CE_{h}$	$3CF_{h}$
C10	3D0 _h	3D1 _h	3D2 _h	3D3 _h	3D4 _h	3D5 _h	3D6 _h	3D7 _h	3D8 _h	-	3DA _h	3DB _h	3DC _h	3DD _h	3DE _h	3DF _h

Node- ID	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16
C11	$3E0_{h}$	$3E1_{h}$	$3E2_{h}$	$3E3_{h}$	$3E4_{h}$	$3E5_{h}$	$3E6_{h}$	$3E7_{h}$	$3E8_{h}$	$3E9_{h}$	-	3EB_{h}	3EC_{h}	3ED_{h}	3EE_{h}	3EF_{h}
C12	$3F0_{h}$	$3F1_{h}$	$3F2_{h}$	$3F3_{h}$	$3F4_{h}$	$3F5_{h}$	$3F6_{h}$	$3F7_{h}$	$3F8_{h}$	$3F9_{h}$	$3 \mathrm{FA}_{\mathrm{h}}$	-	$3FC_{h}$	$3 FD_{h}$	$3 FE_{h}$	$3 \mathrm{FF}_{\mathrm{h}}$
C13	$4C0_{h}$	$4C1_{h}$	$4C2_{h}$	$4C3_{h}$	$4C4_{h}$	$4C5_{h}$	$4C6_{h}$	$4C7_{h}$	$4C8_{h}$	$4C9_{h}$	$4CA_{h}$	$4CB_{h}$	-	$4 C D_{h}$	$4CE_{h}$	$4CF_{h}$
C14	$4D0_{h}$	$4D1_{h}$	$4D2_{h}$	$4D3_{h}$	$4D4_{h}$	$4D5_{h}$	$4D6_{h}$	$4D7_{h}$	$4D8_{h}$	$4D9_{h}$	$4 \mathrm{DA}_\mathrm{h}$	4DB_{h}	$4 DC_{h}$	-	4DE_{h}	$4\mathrm{DF}_\mathrm{h}$
C15	$4E0_{h}$	$4E1_{h}$	$4E2_{h}$	$4E3_{h}$	$4E4_{h}$	$4E5_{h}$	$4E6_{h}$	$4E7_{h}$	$4E8_{h}$	$4E9_{h}$	$4 EA_{h}$	4EB_{h}	4EC_{h}	4ED_{h}	-	4EF_{h}
C16	$4F0_{h}$	$4F1_{h}$	$4F2_{h}$	$4F3_{h}$	$4F4_{h}$	$4F5_{h}$	$4F6_{h}$	$4F7_{h}$	$4F8_{h}$	$4F9_{h}$	$4 \mathrm{FA}_{\mathrm{h}}$	$4FB_{h}$	$4FC_{h}$	$4 FD_{h}$	$4 F E_h$	-

Table 2 — SDO CAN-IDs for response server (S) to client (C)

Resource sharing

CiA447 allows sharing a car's resources, such as a dashboard display. In order to provide controlled access, a locking mechanism with confirmation is required to manage the access to such shared resources.

The locking and release mechanism for the "Display 1" is used as an example here to demonstrate how the locking mechanism works.

Object 6098h is an 8bit command for Display 1. For simplicity in this example, Display 1 access is provided by the gateway (node ID 1). Using an SDO write request, any CiA447 node can now write a command to the display control. Writing a value of 1 requests a lock (device wants to access display), writing a value of 2 requests the release of a previously granted lock.

After writing a lock request, the device needs to read the display status. Object 6097h is an 8bit status value for Display 1. Using an SDO read request, any CiA447 node can read 6097h to determine the display status. A value of 2 to 17 means that it is currently locked to node 1 to 16.

So by reading back the status, a node requesting a lock can check if a written

lock request was successful. Once a lock is established, the node "owning" the lock can use the resource, in this case writing to the display.

Such locking mechanisms have been defined for all displays and buttons.

Note that it is the responsibility of the resource manager to determine potential priorities, including canceling locks. A dashboard controller will prioritize messages from the car over any other CiA447 request. If an internal warning needs to be displayed, an established lock may be canceled.

Olaf Pfeiffer

Embedded Systems Academy Bahnhofstr. 17 30890 Barsinghausen Tel: +49-5105-52 27 89-7 Fax: +4-5105-58407-35 opfeiffer@esacademy.com www.esacademy.com

Appendix – Selection of gateway signals defined by CiA447

The following is a summary of some of the signals defined for gateways. Most of them are optional, so it is up to the individual car/gateway manufacturer to decide if they want to provide this signal or not.

PDO Data that transmits periodically (typically every 100 ms) or on change-of state

- Car body electronics ignition, flaps (doors and hatches), illumination level and car lights, wiper system, central locking system, belt buckles, turn indicator, seat adjustments, accident detection, horn, anti-theft system
- Car power train engine and wheel data
- Steering wheel and dashboard inputs steering wheel, dashboard and console switches

- HID user terminal user terminal (display/switches), function and control keys
- GPS position
 latitude and longitude
- Status of add-on devices

SDO Data that needs to be requested

- Car body electronics VIN (vehicle identification number), steering wheel angle, temperatures and climate control
- Car power train odometer, displayed speed, tank, fuel consumption, gear

SDO Commands that may be supported

• Car body electronics lights and illumination, locking system, windows, doors, hatches, seat adjustment, wiper system, climate control, terminal displays