
iCC 2012 CAN in Automation

10-15

Improving development efficiency and quality of
distributed IEC 61131-3 applications with CANopen

system design

Heikki Saha

Traditional way of working with distributed systems has focused only to application
software development of each node independently of each other. Typically signal
connections are described in manually maintained documentation, which rarely fully
conform CANopen. Result is potentially faulty documents, which need to be checked
during build process. The main problem is a lack of system design – faulty or
inconsistent signal connections, parameter access paths and values can not be
detected as long as file formats are not violated. Further problems are met in system
assembly and service, where faulty configuration files potentially lead to invalid
system behavior. This paper presents the main methods to help managing the signal
and parameter transfers in system level. Because CANopen is a system integration
framework, all necessary services already exist – they just need to be used. First half
of the paper describes how CANopen supports consistent signal validity monitoring
and plausibility checking. Another half of the paper describes how parameter
accesses and parameter attributes can be managed by CANopen mechanisms. Main
result is that CANopen intrinsically supports the system design and required
parameter and signal abstractions can be transferred from CANopen system designs
to IEC 61131-3 application projects in a standardized way.

Introduction

Traditional development approach of
distributed control systems has been
application software oriented. One method
to handle system level information is to
declare signals into applications and then
use the exported EDS-files in network
design. Second approach is to use any
kind of written documents or spreadsheets
to manage the system integration
information. Third approach is that
communication details are included into
application software /9/.
Main problems of the current approaches
are too close dependencies between
applications and system communication
infrastructure – any change in system
communication infrastructure introduces
massive software updates. Another
problem is information storage in non-
standard files – automated information
transfer e.g. from design to system
assembly and service is impossible, which
degrades the overall quality during the
design process.
There are also problems with IEC 61131-3
development tools. They do not support

export of well-formed EDS-files. It is
obvious, because there do not exist all
required information in the application
software. Better way would be an ability to
import interface description from CANopen
system design, which contains all the
necessary information for CANopen
abstraction exports. But instead, tool
vendors support their own, very
constrained system design components to
their tools.
CANopen defines well the system design
process. The core of the process is
presented in /2/, where the main use
cases for the design files are presented,
too. The process description is extended
by means of EDS design and testing in /3/
and automated design tool integration
issues /4/. Furthermore, interfacing
CANopen in IEC 61131-3 programming
environments are well defined /6/ /7/.
The overall process /10/ and process
performance improvements /11/ are
already presented in the literature, but this
paper focuses on the detailed signal and
parameter management concepts and
how to automatically create signal and
parameter abstractions to an example IEC

iCC 2012 CAN in Automation

10-16

61131-3 programming environment. Signal
management is presented first and then
parameter management. Both sections
follow the same basic structure –
definition, connection management,
getting information into use and using it.
Local and remote parameter exports are
covered in their own sections.

Signal definitions

Signals connect system components or
subsystems together and are defined
based on system specification. Because
signals are integrating components to
system, they shall be systematically
managed. Unmanaged system integration
interfaces lead to serious inconsistency
problems.
[A640sub7]
ParameterName=SysPressure
ObjectType=0x7
DataType=0x0004
AccessType=rww
DefaultValue=0
LowLimit=0
HighLimit=2500
PDOMapping=1

Figure 1: Declaration of a signal in a consumer
EDS- or DCF-file
[9130sub1]
ParameterName=Pressure Value 32-bit
ObjectType=0x7
DataType=0x0004
AccessType=rwr
DefaultValue=0
PDOMapping=1
Denotation=SysPressure

Figure 2: Declaration of a signal in a producer
EDS- or DCF-file

Focus shall be in the EDS-files of the
application processing platforms, where
application names can be derived to the
DCF-files of sensors, actuators and I/O-
devices. In addition to the signal name and
type, additional attributes – such as
access type, minimum, maximum and
default value – are needed. Signals shall
always be mappable to/from PDOs. Signal
definitions included in EDS- and DCF-files,
which are used for system integration
management. An example of consumer
side signal description for PLC is
presented in Figure 1. Producer side
description of standard CANopen pressure
transmitter is presented in Figure 2.
Denotation always overrides
ParameterName, which enables flexible
naming /2/. Most system design tools in
the market just modify ParameterName of

signal object instead of utilizing
Denotation, which is used in the example
to clarify the difference between default
and application specific signal names. It is
important to use the application specific
names in the producer side, because
producer side names are used in the
communication databases.

Signal connections

Signal connections in CANopen networks
are defined via PDO mapping and
communication parameters /1/. Because
multiple devices can consume signals
produced by a single node, emphasis shall
be in the producer side to avoid system
inconsistency. Connection information is
inserted during network design and only
invalid connection definitions can be
automatically detected, not wrong or
missing connections. Example of valid
signal connection is presented by Figure 3
and Figure 4.
[1800]
ParameterName=TPDO Communication Parameter
[1800sub1]
ParameterValue=0x191

[1A00]
ParameterName=TPDO Mapping Parameter
[1A00sub0]
ParameterValue=0x1
[1A00sub1]
ParameterValue=0x91300120

Figure 3: Simplified TPDO parameters in the
producer’s DCF-file
[1400]
ParameterName=RPDO Communication Parameter
[1400sub1]
ParameterValue=0x191

[1600]
ParameterName=RPDO Mapping Parameter
[1600sub0]
ParameterValue=0x1
[1600sub1]
ParameterValue=0xA6400720

Figure 4: Simplified RPDO parameters in the
consumer’s DCF-file

CANopen signal transfers include intrinsic
message length check provided by RPDO-
mapping mechanism and an optional
message cycle time monitoring can also
be supported /1/. Additionally, heartbeat
consumer can be used for coarser validity
monitoring of incoming signals.

iCC 2012 CAN in Automation

10-17

Signal abstraction export

It is most logical to manage the signals in
CANopen system design, because it is the
system integration framework. Signal
variable declarations and attribute
definitions can be exported to the software
project. Variables and attribute definitions
need to be defined separately, because
absolute addressing can not be used for
structure members. Signals with attributes
are read from the DCF-file of the PLC. An
example export of the pressure signal is
presented in Figure 5.
VAR_GLOBAL
 SysPressure AT %MD262: DINT := 0;
 dSysPressure: dtDINT := (
 ParName := 'SysPressure', Unit := '',
 DefVal := 0, MinVal := 0,
 MaxVal := 2500, Status := 0);
END_VAR

Figure 5: Declaration of a signal in PLC-
application

Signal monitoring information can be
collected from RPDO timeout monitoring –
if supported – and heartbeat consumer of
the signal producer. In the example in
Figure 6 the producer node-ID is 17.
FUNCTION PdoMon : BOOL
VAR_INPUT
 Dummy: BYTE;
END_VAR
 dSysPressure.Status:=
 UpdPdoSt(dSysPressure.Status,
 NmtSts[17]);
 PdoMon := TRUE;
END_FUNCTION

Figure 6: Automatically generated input signal
validity monitoring function supporting
heartbeat consumer only

To be able to automatically retrieve
system level information, there shall be a
standardized method to store the system
structure. Node list file is used as a project
table of contents, listing the DCF-files of
the system components. Example
standard node list file is presented in
Figure 7. Due to the tools used in the
evaluation, comparable tool vendor
specific format presented in Figure 8 had
to be used. The information content is
fortunately equal.
[Topology]
Node2DCFName=D002.DCF
:
Node17DCFName=D0017.DCF

Figure 7: Example of CANopen-conformant
nodelist.cpj file /4/

[Nodes]
2=C:\Documents and Settings\...\D002.DCF
:
17=C:\Documents and Settings\...\D017.DCF

Figure 8: Example of proprietary nodelist.pco
file used in the experiments

Using signals with attributes

Signal description with attributes can be
exported from CANopen system design to
the SW project, but where do we need
such information? The main goal is to
enable re-usable SW by excluding all
system dependent information from the
application behavior and offer it
separately. Signal attributes may be used
for various purposes, but an example of
one common purpose is presented in
Figure 9. Normal application processing
takes place only if the input signal is valid
and signal value within the defined range.
Default signal value is used if up-to-date
value is not available.
IF dSysPressure.Status = 0 THEN
 IF (SysPressure > dSysPressure.MaxVal) OR
 (SysPressure < dSysPressure.MinVal)
 THEN
 (* Out-of-range processing *)
 :
 ELSE
 (* Normal processing *)
 :
 END_IF;
ELSE
 (* Not-up-to-date processing *)
 SysPressure := dSysPressure.DefVal;
 :
END_IF;

Figure 9: An example program utilizing signal
attributes in PLC

Parameter definitions

Parameters are defined locally for each
node in their EDS-files. Each parameter
has same set of attributes than signals,
defined also in the EDS-file. Target
position specific values are assigned in the
system design phase and they are
available only in the DCF-files. Example
parameter definitions are presented in
Figure 10, where several details need
special attention.
If a parameter value can be modified, its
access type shall be of course read-write
(RW). All parameters, which can be
modified, shall be systematically managed
and derived from the system
requirements. But, if the parameter is used
for indication only, it shall be defined as

iCC 2012 CAN in Automation

10-18

read-only (RO). More freedom can be
allowed for status indication parameters.
Special attention shall be put on minimum,
maximum and default value attributes,
because they are used also by clients.
PDO-mapping attribute is used for
determining parameter kind. Parameters
are set to volatile by setting attribute
Mappable to 1 and remanent by setting
attribute Mappable to 0. The use this
attribute is safe, because it does not
violate CANopen and it is supported by
existing CANopen system design tools.
[2100]
ParameterName=AppParam0
ObjectType=0x7
DataType=0x0005
AccessType=rw
DefaultValue=10
LowLimit=5
HighLimit=200
PDOMapping=0

[2200]
ParameterName=StatusOut0
ObjectType=0x7
DataType=0x0005
AccessType=ro
DefaultValue=0
LowLimit=0
HighLimit=255
PDOMapping=1

Figure 10: Declaration of a remanent and
volatile parameter in EDS- or DCF-file

Publishing parameters to clients

Remote parameter access path definitions
are not directly defined by CANopen, but
additional attributes can be added for each
object in the EDS- and DCF-files /2/.
According to the example in Figure 11,
access path is defined by attribute ClientX.
To enable multiple client definitions, an
index X starting from 0 is included to the
attribute name. The attribute value is
directly the client node-ID.
Names of published parameters are
combination of NodeName and
ParameterName to prevent conflicts with
local names. The naming convention
introduces one major challenge – how to
modify the names so, that they do not
contain invalid characters and too many
characters. Typical constraint of IEC
61131-3 variable names is maximum of 32
significant characters. Standard attribute
Denotation can again be used for holding
a shortened name for parameter. System
designer has to give the short name as
part of the parameter publishing action. If

Denotation is not defined, ParameterName
can be used instead.
[2100]
ParameterName=ApplicationParameter0
ObjectType=0x7
DataType=0x0005
AccessType=rw
DefaultValue=10
LowLimit=5
HighLimit=200
PDOMapping=0
Client0=2
Denotation=AppParam0

[2200]
ParameterName=StatusOut0
ObjectType=0x7
DataType=0x0005
AccessType=ro
DefaultValue=0
LowLimit=0
HighLimit=255
PDOMapping=1
Client0=2
Denotation=StatOut0

Figure 11: An example of parameters
published for client with node-ID 2

As defined earlier, node list file is used as
a project table of contents, listing the DCF
files of the system components. Remote
parameters are collected from all the DCF-
files, except the target device’s own DCF.

Local parameter abstraction export

Local parameter variable definitions can
be exported directly from the local EDS- or
DCF-file.
VAR_GLOBAL RETAIN
 AppParam0: BYTE := 0;
END_VAR
VAR_GLOBAL
 StatusOut0: BYTE := 0;
 dAppParam0: dtBYTE := (
 ParName := 'AppParam0', Unit := '',
 DefVal := 10, MinVal := 5,
 MaxVal := 200, Status := 0);
 dStatusOut0: dtBYTE := (
 ParName := 'StatusOut0', Unit := '',
 DefVal := 0, MinVal := 0,
 MaxVal := 255, Status := 0);
END_VAR

Figure 12: Declaration of remanent and
volatile parameters in PLC-application

Local parameter variables are defined
equally with the signal variables, except
there is no absolute address defined. Also
attributes are defined equally, as
presented in Figure 12.

Remote parameter abstraction export

Local parameter objects are handled as
signals – they are variables linked into the
object dictionary. According to the

iCC 2012 CAN in Automation

10-19

example in Figure 13, remote variables
are represented as arrays of structures,
containing access- and other attributes
and placeholder for value.
Each data type has its own array to enable
efficient reading and writing in sequences.
AccTyp attribute supports accessing in
sequences, because value 0 indicates that
the parameter can not be written.
Application names are defined as separate
constants, by which the arrays can be
indexed.
VAR_GLOBAL
 (* Remote byte definitions *)
 ReBytes: ARRAY[0..1] OF ReByte :=
 (NetId := 0, SdoNum := 3,
 OdIdx := 16#2100, OdSub := 16#0,
 ParName := 'APP_PLC_AppParam0',
 Unit := '-', DefVal := 10,
 MinVal := 5, MaxVal := 200,
 Value := 0, AccTyp := 1),
 (NetId := 0, SdoNum := 3,
 OdIdx := 16#2200, OdSub := 16#0,
 ParName := 'APP_PLC_StatusOut0',
 Unit := '-', DefVal := 0,
 MinVal := 0, MaxVal := 255,
 Value := 0, AccTyp := 0);
 (* Remote byte enumerations *)
 APP_PLC_AppParam0: BYTE := 0;
 APP_PLC_StatusOut0: BYTE := 1;
END_VAR

Figure 13: An example of published parameter
in the client PLC application

Accessing remote parameters

IEC 61131-3 function blocks for SDO up-
and downloads are standardized /6/. While
there are some deviations in the CANopen
libraries, minor deviations do not matter,
because same information is required for
the accesses. An example of parameter
value read is presented in Figure 14 and
of parameter write in Figure 16.
Remote parameter value reads and writes
shall always be triggered by application to
prevent risk to break the communication
schedule by unintentional accesses. A
prerequisite is of course thoroughly made
scheduling of the communication.
Automatic background accesses may
sound attractive, but the use of such
prevents the applications to ensure the
safe operation during the remote
parameter accesses.
SDOinst(
 Handle :=
 ReBytes[APP_PLC_AppParam0].SdoNum,
 Index :=
ReBytes[APP_PLC_AppParam0].OdIdx,
 SubIndex :=
 ReBytes[APP_PLC_AppParam0].OdSub,
 Length := 4,
 DataPtr :=

 ADR(ReBytes[APP_PLC_AppParam0].Value),
 Start := WORD_TO_BYTE(SDO_READ));

Figure 14: An example program for parameter
value read in client PLC
SDOinst(
 Handle :=
 ReBytes[APP_PLC_AppParam0].SdoNum,
 Index :=
ReBytes[APP_PLC_AppParam0].OdIdx,
 SubIndex :=
 ReBytes[APP_PLC_AppParam0].OdSub,
 Length := 4,
 DataPtr :=
 ADR(ReBytes[APP_PLC_AppParam0].Value),
 Start := WORD_TO_BYTE(SDO_WRITE));

Figure 15: An example program for parameter
value write in client PLC

Using remote parameters with attributes

Local parameters are just global variables
with separate attribute structures.
CANopen stacks of PLCs do not
necessarily support range checking for
parameter object values. Parameter
values can be limited within the defined
ranges e.g. by application according to the
example in Figure 16.
IF (AppParam0 > dAppParam0.MaxVal) THEN
 AppParam0 := dAppParam0.MaxVal;
END_IF;
IF (AppParam0 < dAppParam0.MinVal)
 AppParam0 := dAppParam0.MinVal;
END_IF;
(* Normal processing *)
:

Figure 16: An example PLC program using
local parameter with its attributes
ReBytes[APP_PLC_AppParam0.Value :=
 ReBytes[APP_PLC_AppParam0].DefVal;

Figure 17: An example program setting remote
parameter value to its default in client PLC

Remote parameter values can be used
similarly. After intentional read, parameter
values can be accessed locally in the
client and finally intentionally written back
if required. An example how client can
restore default value for a single
parameter is presented in Figure 17.
Figure 18 presents range-sensitive
parameter value increment as another
example.
IF ParamIncrease = 1 THEN
 IF (ReBytes[APP_PLC_AppParam0.Value] <
 ReBytes[APP_PLC_AppParam0].MaxVal)
 THEN
 ReBytes[APP_PLC_AppParam0.Value :=
 ReBytes[APP_PLC_AppParam0].Value + 1;
 ELSE
 ReBytes[APP_PLC_AppParam0.Value :=
 ReBytes[APP_PLC_AppParam0].MinVal;

iCC 2012 CAN in Automation

10-20

 END_IF;
END_IF;

Figure 18: An example program modifying
value of a remote parameter by utilizing its
attributes in client PLC

Putting all together

NMT-master and membership monitoring
are proven mechanisms, which are
presented earlier in literature /10/. Even if
NMT-master is implemented as a part of
the application, configuration can be
automatically exported from CANopen
system design. Exported node names
enable e.g. the use of generic membership
monitoring GUI components.
Signal management presented in this
paper follows CANopen and is simple but
efficient. Moreover, heartbeat consumer
based signal validation was implemented,
for which configuration was automatically
exported from system design. If PDO
monitoring were supported, it can be used
as a supporting signal validation.
Validation mechanisms provide increased
dependability and improve the overall
safety without additional safety services.
Parameter management presented in this
paper provides extremely efficient
mechanisms for parameter management
in distributed systems. Main improvement
comes from significantly reduced number
of errors provided by automated remote
parameter attribute management.
The only missing feature is management
of emergency error codes (EEC). The
reason is simple – there is not such a
mechanism defined for EDS- and DCF-
files /2/. EEC decoding details will be
included into XDD- and XCD-files /5/ and
the corresponding management is
presented in the future.
In addition to the improved design process
performance, proposed mechanisms
improve overall dependability. Table 1 lists
commonly accepted failure categories /12/
and protection mechanisms provided by
CANopen. Mechanisms included the work
presented by this paper have positive
influence on the underlined categories.

Table 1: Typical communication failure
categories and protection mechanisms
supported by presented CANopen cocepts

Threat CANopen protection mechanism(s)
Repetition Managed communication parameters,

such as event- and inhibit-times
Deletion Heartbeat producer and consumer

Signal monitoring with RPDO timeout
monitoring
Synchronous PDO transmission
monitoring
SDO timeout monitoring

Insertion Detection of reserved CAN-IDs of
each device
Request–reply protocols, such as SDO
and LSS
NMT state-machine
Device state-machines

Incorrect
sequence

Request–reply protocols, such as SDO
and LSS
NMT state-machine
Device state-machines

Corruption CAN error detection mechanisms
Request–reply protocols
NMT state-machine
Device state-machines
Signal plausibility checking

Timing error See repetition, deletion and insertion
Masquerade CAN error detection mechanisms

DLC monitoring of protocols
Inconsistency NMT state-machine

Device state-machines

Concluding remarks

Main result was that CANopen significantly
boosts the development of distributed
systems and deviations from any related
standards are not required, as commonly
stated in the industry.
It was positive surprise, how small impact
was caused by proprietary SDO function
blocks and proprietary node list file. Main
reason for good usability was that the
function blocks used mainly same
information in and out and node list file
contained paths to the DCF-files,
independently of the format.
All object attributes supported by current
EDS- and DCF-files are required in the
system development. Some more
attributes – such as unit, scaling, signal
enumeration, boolean signal groups – will
be needed in the future together with EEC
decoding details to improve the system
design further.
Current EDS- and DCF-files will be
superseded by XML-format XDD- and
XDC-files in the near future. The transition
is important, because previously

iCC 2012 CAN in Automation

10-21

mentioned important features are missing
from the current files.

Moreover, exporting will be more efficient
in the future with standardized PLCopen
XML file format /8/. That reduces the
target dependency of the presented
concepts in the future. However, there will
be some target-PLC specific details left,
e.g. publishing parameter objects and
signal object access method.

References

/1/ CANopen application layer and
communication profile, CiA-301, CiA
/2/ Electronic device description Part 1:
Electronic Data Sheet and Device
Configuration File, CiA-306-1, CiA
/3/ Electronic device description Part 2:
Profile database specification, CiA-306-2,
CiA
/4/ Electronic device description Part 3:
Network variable handling and tool
integration, CiA-306-3, CiA
/5/ Device description, XML schema
definition, CiA-311, CiA
/6/ Accessing CANopen services in
devices programmable in IEC 61131-3
languages, CiA-314, CiA
/7/ IEC 61131-3 programmable devices,
Implementation and user guideline, CiA-
809, CiA
/8/ Technical Paper PLCopen Technical
Committee 6, XML Formats for IEC
61131-3, Version 2.01 – Official Release,
PLCopen, 2009, 80 p.
/9/ Tisserant E., Bessard L., Trélat G.,
Automated CANopen PDO Mapping of
IEC 61131-3 Directly Represented
Variables, Proceedings of 12:th iCC, CiA,
2008, pp. 06-08..06-13
/10/ Saha H., Wikman M., Nylund P.,
CANopen network design and IEC 61131-
3 software design, CAN-Newsletter
3/2009, CiA, 2009, pp. 52–58
/11/ Saha H., Benefits of intelligent
sensors and actuators throughout the
systems life cycle, The Twelfth
Scandinavian International Conference on
Fluid Power, May 18-20, 2011, Tampere,
Finland, ISBN-978-952-15-2517-9, pp.
169–181
/12/ Alanen J., Hietikko M., Malm T.,

Safety of Digital Communications in
Machines, VTT Industrial Systems, 2004,
95 p.

Dr. Heikki Saha
Research Engineer
Sandvik Mining and Construction Oy
Applied Research
P.O. BOX 100, FIN-33311 TAMPERE,
Finland
Phone: +358 (0)400 346 537
Fax: +358 (0)205 44 121
Email: heikki.saha@sandvik.com
www.miningandconstruction.sandvik.com
