
iCC 2013 CAN in Automation

 04-1

Next Generation CAN FD Controller Core

Daniel Leu, Inicore

The new CAN FD specification offers several enhancements over the current ISO
11898-1 standard such as an eightfold increase in the data field length and enhanced
data throughput. In order to provide high efficiency of the software, the CAN
controller’s host interface and message handling need to be streamlined and
optimized.
This paper discusses the implementation and verification of a new FIFO-based CAN
FD core with an application programming interface that minimizes processor read and
write cycles and has dedicated sideband signals to support DMA-based message
transfers. The core contains supportive debug logic to assist the system in analyzing
and optimizing CAN traffic, something especially important when using higher data
rates. Verification testbench and lab setup are presented as well.

In modern system-on-chip (SOC) designs,
the CAN interface is located together with
other low-speed peripherals. Although the
data throughput of the new CAN FD is
significantly higher than that of regular
CAN, it is still marginal compared to
Gigabit Ethernet, USB 3 or other high
performance interfaces.
Figure 1 shows a typical architecture of a
modern SOC with several local buses that
are interconnected with bus bridges. A
CAN interface can placed at many
different locations.

Figure 1: System-on-chip architecture

– CAN 1 is connected to the main system
bus: it is very unlikely to have the CAN
peripheral directly connected to the
system bus due to its low-performance
characteristics.

– CAN 2 is connected to the preliminary
peripheral bus: this is a very likely setup
for regular peripheral devices.

– CAN 3 is connected to the secondary
peripheral bus: in more complex
systems with additional high-
performance buses, the CAN peripheral
might move even further away from the
processor.

– CAN 4 as a standalone CAN controller
connected to the SOC via an external
bus interface (EBI).

We looked at some timing data from FPGA
SOC devices. Table 1 shows the
maximum frequency the processor and the
different buses run at. For this analysis,
the absolute value of the bus frequency is
not important. The interesting factor is the
ratio of the processor to the peripheral bus
frequency.
In most devices, this ratio can be changed
to conserve power if a sub-bus doesn’t
need to run at the maximal frequency.

SOC Architecture

Processor Processor

Cache

System Bus

Memory EBI

CAN 4

Peripheal
Bridge

Peripheral Bus 1

CAN 1

CAN 2

Bus Bridge

Performance Bus

Peripheal
Bridge

Peripheral Bus 2

CAN 3

...

iCC 2013 CAN in Automation

04-2

Table 1: Bus performance in MHz

Device Proces
-sor

System
bus

Peripheral
bus

Altera Aria V 800 400 200
Microsemi
SmartFusion 100 100 50

Microsemi
SmartFusion 2 166 166 166

Xilinx Zinq1 600 300 150
Xilinx Zinq2 800 266 133

The location of a peripheral device in a
SOC has a significant performance impact.
The further away the peripheral device is
from the processor, the longer it takes for
the data to travel. There are different
sources that impact this delay:
– A system bus usually runs at a lower

frequency than the processor.
– Every time data crosses from one bus

to another, a delay of one or more clock
cycles is introduced.

– Accessing a new bus might be delayed
because of an already ongoing data
transfer.

– Sub-buses tend to run at a lower
frequency than main buses.

– Accessing external devices is always
slow.

All these delays add up and slow down a
data read or write cycle to a peripheral
device.
But there are ways to address this:
1) Modern system buses provide the
option to transfer data in blocks. This
doesn’t change any of the delays seen for
a single transfer, but each additional data
word just takes one or two extra peripheral
clock cycles.
2) Instead of having the processor fetching
the data, an external direct memory
access (DMA) controller can transfer it in
the background while the processor
continues its normal operation.
To summarize, it is important to have the
following goals – among others, in mind
when designing a peripheral device for a
modern SOC:
– Limit the number of access cycles

1 Using 4:2:1 clock ratio selection
2 Using 6:2:1 clock ratio selection

– Support block transfers
– Support data transfers without or only

with limited processor involvement

Features

As a lucky coincidence, CAN FD came
along exactly when we started planning
our next generation CAN controller core.
With the higher data throughput, this nicely
fit into the features we had already laid
out:

General architecture:
– FIFO based
– Separate clock domains for CAN and

system logic
– Optimized API
– Support for external DMA controller
– Error capture feature to support bus

debugging
– Designed for FPGA and ASIC targets

Receive Buffer improvements:
– Up to two receive FIFOs
– Up to 32 enhanced message filters with

mask and range match mode; covering
ID, new CAN FD control flags and two
most significant data bytes

– Programmable FIFO length and
message length

– 32-bit timestamp

Transmit Buffer improvements:
– One transmit FIFO that preserves

message order (no priority inversion)
– One transmit queue where the highest

priority message is sent first.
– Programmable FIFO and queue length

and message length
– Support for message tag

We then added the support for the CAN
FD and mixing and matching CAN 2.0 A/B
and CAN FD messages.

Ease of use

Although CAN FD brings new features and
complexities to a CAN controller, it does
not mean that it needs to be more difficult
to use. The API of our CAN FD controller

iCC 2013 CAN in Automation

04-3

core, CANmodule, was designed with
ease-of-use in mind:

– Consistent buffer size: All message

objects of a given message buffer (eg.
RxFIFO0) have the same size.

– Identical layout for receive and transmit
buffer

– Configurable number of message
objects per buffer

– Targets 32-bit bus systems
– Designed to minimize access cycles

CANmodule overview

As stated earlier, our next generation CAN
controller uses FIFOs as message buffers.
A common core external memory is used
for storage.

Figure 2: CANmodule Block diagram

This way, one can configure the core to
optimally use the available resources and
match the application requirements.

– The CAN Engine handles the low-level

CAN bus traffic.
– The Memory Arbiter manages access

requests to the common memory.
– The Receive Handler performs the

message filtering and contains the
receive FIFO logic.

– The Transmit Handler contains the
transmit FIFO and Queue and the
message arbiter to select the highest
priority message.

– The Bus Interface has the logic to
connect to the host bus as well as all
configuration registers, interrupt and
debug logic.

– The block DMA Support contains the
dedicated logic for DMA support and
the necessary DMA sideband signals.

DMA support

Using an on-chip DMA controller greatly
reduces the processor overhead related to
moving data. The DMA controller
autonomously transfers data between the
peripheral and system memory. The
processor only gets interrupted once the
programmed data transfer is complete.

Figure 3: DMA data sequence (receive)

Once the DMA controller and the
CANmodule are programmed for DMA
transfers, data is transferred between the
peripheral and the system memory:

1) The CANmodule asserts dma_req
to indicate that enough data is
available for a transfer.

2) The DMA controller fetches the
data from the requesting device

3) Then stores it in the destination
memory.

4) Once the programmed number of
words are transferred, the
dma_irq is asserted and the
processor receives this interrupt.

The CANmodule provides all necessary
sideband signals to support both simple
DMA controllers, that only have a
dma_req signal, and complex DMA
controllers that have a more sophisticated
interface.

CANmodule

CAN
Engine

can_tx

can_rx

Receive
Handler

Transmit
Handler

Memory Arbiter

SRAM

Bus
Interface

DMA
Support

ARM
Cortex-M3 INTC

Bus Bridge

Peripheral Bus

System Bus

SRAM

can_txcan_rx

DMA

CANmodule

dma_req

dma_irq

1
2

3

4

iCC 2013 CAN in Automation

04-4

If DMA transfers are not used, dma_req
can be repurposed as a dedicated
interrupt signal to indicate that receive
data is available or that the transmit FIFO
can accept more data.
In order to support DMA operation, the
CANmodule contains an auto-
acknowledge / auto-transmit feature. If
enabled, this works like this:
– On the Receive buffer:

Once an entire message is read, the
message acknowledge flag is
automatically asserted. There is no
need to set this flag by an additional
write operation.

– On the Transmit buffer:
Once the entire message has been
written, the message transmit request
flag is automatically set. There is no
need for an additional write or
read/modify/write operation.

This auto-acknowledge / auto-transmit
feature can also be used independently of
the DMA operation.

Shared Memory

Not all applications have the same
resource requirements. Some might only
need one receive FIFO and a big transmit
queue while others need two big receive
FIFOs and only a small transmit queue.
Figure 4 shows the layout of the common
memory that is shared by the receive and
transmit handlers.
The number of objects each section
supports is configurable. In order to
simplify the implementation, the start
address of each section needs to be set
as well.

Figure 4: Shared memory layout

Transmit Handler

The CANmodule supports two ways of
sending a message: 1) using the transmit
FIFO (TxFIFO) and 2) using the transmit
queue (TxQueue).

Figure 5: Transmit handler

The TxFIFO is used when the message
order may not be changed. For example
with CANopen block messages, a change
in order would destroy the proper data
sequence.
When using the TxQueue, the message
with the highest priority is sent first.

Message Filter 0

...

Message Filter n

Receive FIFO 0

Receive FIFO 1

Transmit FIFO

Transmit Queue

CFG_RxFIFO0_START

CFG_RxFIFO1_START

CFG_TxFIFO_START

CFG_TxQueue_START

CFG_RxFIFO0_NUM

CFG_RxFIFO1_NUM

CFG_TxFIFO_NUM

CFG_TxQueue_NUM

CFG_MsgFilter_NUM

Tag Memory CFG_TagMem_NUM

CFG_TagMem_START

CANmodule

Tx Handler

Memory Arbiter

Tx Queue Message
Arbiter

Bus
Interface

CAN
Engine

Tag FIFOTx FIFO

iCC 2013 CAN in Automation

04-5

Whenever a message is sent, aborted or a
single-shot transmission error is detected,
an entry is added to the Tag FIFO. An
entry consists of the result code, message
identifier, tag field and the timestamp.

Receive handler

The receive handler contains two receive
FIFOs (RxFIFO 0/1) that can be
individually configured.

Figure 6: Receive handler

Whenever a new message arrives, the
Receive Handler checks it against all
message filter settings. If a match is found,
the message is stored in the specified
RxFIFO.
Whenever the start-of-frame (SOF) field of
a new message is detected, the actual
timestamp is saved and added to the
message when it is stored in the RxFIFO.
There are applications where it is very
important to synchronize all nodes with a
special sync message. The CANmodule
contains a hardware trigger output
(hw_trigger) that is asserted whenever
a match on message filter 0 is detected.
This output can be used as a dedicated
interrupt source or it can directly feed user
logic that synchronizes a hardware based
timer.

Design Verification

Prior to using the core inside an FPGA in
the lab, we verified it through simulation.
We developed two different testbenches. A
CAN conformance testbench to verify the
low-level CAN protocol on a time-quanta
basis, and a system-level testbench to
verify the host bus interface and all the
message handling.

CAN conformance testbench

The testbench shown in Figure 7 is based
on the test procedures defined in ISO
16845 and enhanced for CAN FD.

Figure 7: CAN conformance testbench

The meanings of the different blocks are:
– DUT: Device Under Test (CANmodule)
– DUT Handler: this is a simple state-

machine that decodes and executes
commands received via the CAN bus.

– CAN Transceiver Functional Model: this
models CAN bus transceiver with
programmable transmit and receive
delays

– CAN Logger: this module logs CAN
activity and reports any errors detected.

– CAN BFM: the CAN Bus Functional
Model generates the bus traffic based
on command received from the Stimuli
Generator

– Stimuli Generator: these modules
implement the test procedures and
execute them. Results are checked
against the expected value and success
and errors are reported.

System-level Testbench

The testbench shown in Figure 8 is used
to verify the entire message handling and
processor interface of the CANmodule.
The block diagram looks very similar to
that of the conformance testbench and
many components are shared. The main
difference is that we use a bus functional
model for the host interface (APB or AXI
BFM), which is controlled by the stimuli
generator block.

CANmodule

Rx Handler

Memory Arbiter

Rx FIFO 1

Message
Filter

Bus
Interface

CAN
Engine

Rx FIFO 0

hw_trigger Stimuli Generator

DUT
CAN

Transceiver
FM

CANbus

CAN
Logger

CAN
BFM

DUT Handler

Stimuli GeneratorStimuli Generator

iCC 2013 CAN in Automation

04-6

Figure 8: System-level testbench

Several Stimuli Generators are used to
exercise the DUT to cover all regular and
error scenarios, so that everything would
be verified before programming an FPGA
going to the lab for hardware verification.

FPGA Design

SOC FPGAs nowadays contain entire
microcontroller subsystems with all
standard features of a standalone
processor combined with a traditional
FPGA fabric. They serve as a very flexible
platform for custom microprocessor-based
integrations.
We used Microsemi’s SmartFusion FPGA
as our test vehicle to verify proper
operation of the CANmodule in our lab. An
APB3 bus master is exposed to the FPGA
fabric that connected to our local APB3
bus and the CANmodule core.

Figure 9: FPGA block diagram

We have two different versions of this
FPGA, one with one CAN channel and a
second with two CAN channels.

Hardware Setup

To show and test proper operation of the
CANmodule with the new CAN FD
protocol, we setup a simple 5-node
network in our lab. It consist of following
components:
– Vector VN1630: Dual channel CAN

network interface using the Bosch M-
CAN module implemented in a FPGA.
These two nodes are the reference in
our system.

– FPGA board 1 (bottom left): Dual
channel CANmodule implementation

– FPGA board 2 (bottom right): Single
channel CANmodule implementation as
shown in Figure 9.

Figure 10: Lab setup of CAN network

In our test setup, we use one channel of
the VN1630 as the protocol logger and the
other as a test generator. On the two
FPGA boards, we have test software
running that generates CAN FD frames
with different data lengths, varying ID and
data content.

Outlook

The presented implementation uses a
standard AMBA APB3 bus interface. APB3
is a slow peripheral bus with a data and an
address phase. A future version of the
core will use a higher performance AXI
interface that supports burst mode.
Once CAN FD is standardized and the ISO
16845 CAN conformance test plan is
updated, we will submit the CANmodule to
C&S for conformance testing.

Stimuli Generator

DUT
CAN

Transceiver
FM

CANbus

CAN
Logger

CAN
BFM

APB or AXI
BFM

Stimuli GeneratorStimuli Generator

FPGA Fabric

Microcontroller Subsystem

ARM
Cortex-M3 ENVM

UART

TIMER

INTC

CANmodule

APB
Bridge

APB Bus

AHB Bus

APB
Bridge SRAM

APB Bus

can_txcan_rx

can_int_req

iCC 2013 CAN in Automation

04-7

Daniel Leu
Inicore Inc.
5600 Mowry School Road, Suite 180
US-94560 Newark, CA
Tel.: +1 510 445 1529
Fax: +1 510 656 0995
daniel@inicore.com
www.inicore.com

References
[1] Bosch, CAN with Flexible Data-Rate,

White Paper, Version 1.1
[2] Inicore CANmodule-4 Datasheet,

Preliminary Version
[3] Xilinx Zynq-7000 AP SoC Technical

Reference Manual
[4] Microsemi SmartFusion2 Clocking

Resources User’s Guide
[5] Altera Arria V Device Handbook
[6] Altera Arria V GX, GT, SX, and ST Device

Datasheet

