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Linux	and	ISO	15765-2	with	CAN	FD

Dr. Oliver Hartkopp, Volkswagen AG

Only	two	weeks	after	disclosure	of	the	CAN	FD	main	features	at	13th	iCC	[1]	the	Linux	
CAN	community	started	to	discuss	about	a	seamless	integration	of	CAN	FD	into	the	CAN	
subsystem	of	the	Linux	operating	system.	This	paper	gives	a	comprehensive	survey	
about	 the	 integration,	 configuration	 and	 usability	 of	 CAN	FD	 in	 the	 Linux	 operating	
system	as	well	as	an	introduction	into	the	new	ISO15765-2:2015	with	CAN	FD	support.	

With the integration of the socket-based 
CAN support in Linux 2.6.25 [2] in April 
2008 the data structures and programming 
interfaces were defined and therefore fixed 
in an application binary interface (ABI). 
This fixed ABI implies that Linux CAN (aka 
SocketCAN) applications that were compiled 
and linked statically for Linux in 2008 are 
able to run on the latest Linux system with a 
recent Linux 4.x kernel.
Analogue to this guaranteed binary 
backward compatibility for applications the 
introduction of the common CAN driver 
interface in Linux 2.6.31 in September 2009 
fixed the way how CAN network interfaces 
are configured in terms of bitrate and other 
CAN controller specific settings.

From the perspective of CAN application 
programmers the formerly settled properties 
of up to eight bytes of payload and a single 
bitrate to be set into the CAN controller 
became uncertain. With CAN FD the known 
CAN bitrate configuration is doubled and the 
data structures to hold CAN frame contents 
are increased in size which can lead to buffer 
overflows when the former CAN frame data 
structure is accidently used. Preserving 
the simple and established SocketCAN 
programming interface under the new 
conditions with CAN FD is an ambitious task 
which has been accomplished by the Linux 
CAN community instantaneously after 13th 
iCC.

CAN	FD	data	structures

As the associated CAN interface and the 
timestamp of the CAN frame are provided by 
existing Linux programming interfaces the 
data structure which holds the CAN frame 

content is the elementary data definition for 
SocketCAN. The original classic CAN frame 
data structure is defined as:

struct can_frame {
        canid_t can_id;
        __u8    can_dlc;
        __u8    __pad;
        __u8    __res0;
        __u8    __res1;
        __u8    data[8]; /*aligned*/
};

The can_id contains the CAN Identifier with 
additional bit values e.g. to point out a 29 
bit identifier or RTR frames. The can_dlc 
contains the number of used bytes in the 
data[ ] byte array. Remark: The padding and 
reserved bytes have been added recently 
to be in line with the CAN FD definitions. 
These extensions do not have an impact on 
the application binary interface as the data[ 
] was always 64 bit aligned (see linux/can.h 
[3] for details).

For the CAN FD frame a separate data 
structure has been defined:

struct canfd_frame {
        canid_t can_id;
        __u8    len;
        __u8    flags;
        __u8    __res0;
        __u8    __res1;
        __u8    data[64]; /*aligned*/
};

The major differences are the introduced 
flags element which holds CAN FD frame 
specific flags like CANFD_BRS and 
CANFD_ESI and the len element. The len 
element shares the position with the can_
dlc element of the classic CAN frame and 
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(still) contains the number of used bytes 
in the data[ ] byte array. In classic CAN 
applications the can_dlc value was usually 
used as plain numeric length information 
as there was a 1:1 mapping from the ‘data 
length code’ and the data length. Using CAN 
FD frames the data length code mapping is 
performed on the CAN driver level which 
makes the software adaption for CAN FD 
pretty easy.

Processing length information to print CAN 
payload data (before CAN FD support):

struct can_frame cframe;

for (i=0; i < cframe.can_dlc; i++)
    printf(„%02X „, cframe.data[i]);

Processing length information to print CAN 
payload data (with CAN FD support):

struct canfd_frame cframe;

for (i=0; i < cframe.len; i++)
    printf(„%02X „, cframe.data[i]);

This example points out the main change 
for application programmers when moving 
their code to (additionally) support CAN FD. 
Several code references how to move from 
classic CAN to CAN FD can be retrieved 
from the code changes [6] in the Linux can-
utils package which has been adapted when 
Linux 3.6 was released in 2012. The can-utils 
user space tools to send, receive, store and 
replay CAN traffic can be found as source 
code on GitHub [4] and as pre-compiled 
package ‘can-utils’ in your preferred Ubuntu/
Debian based Linux distribution [5].

CAN	FD	network	infrastructure

Both the classic CAN frames and the CAN 
FD frames are processed inside the Linux 
network infrastructure in so called socket 
buffers. With the introduction of CAN FD a 
second type of CAN related socket buffers 
was created to hold the canfd_frame data 
structures.

As legacy CAN applications only can cope 
with classic CAN frames a new socket option 
CAN_RAW_FD_FRAMES is defined for 
CAN_RAW sockets to enable the reception 
and transmission of CAN FD frames. 

When CAN FD is enabled for the socket e.g. 
the read() system call can return with two 
different length information:

 • 16 bytes for classic CAN frames
 • 72 bytes for CAN FD frames

Therefore the buffer which is assigned to be 
utilized by the read() system call has to be a 
of the size of a struct canfd_frame when CAN 
FD is enabled. As the CAN FD controller still 
might receive classic CAN frames in this FD 
enabled mode the struct canfd_frame might 
be filled with the shorter struct can_frame 
content. Due to the identical layout - e.g. 
with the can_dlc and len element – a classic 
CAN frame can be stored inside the CAN 
FD frame structure. To distinguish the frame 
type only the length information has to be 
evaluated with is returned by the read() 
system call:

 • 16 bytes Ò classic CAN frame
 • 72 bytes Ò CAN FD frame

For convenience reasons these values 
are defined as the ‘maximum transfer unit’ 
(MTU) in the linux/can.h [3] include file as 
CAN(FD)_MTU values:

#define CAN_MTU   (sizeof(struct can_frame))
#define CANFD_MTU (sizeof(struct canfd_frame))

CAN	FD	driver	infrastructure

With Linux 3.6 the CAN data structures 
and the network infrastructure have been 
extended to support CAN FD. Along with 
these changes the virtual CAN driver (vcan) 
has been updated in a way that it could be 
switched to be a classic CAN or CAN FD 
interface. By setting the vcan’s MTU value 
to CANFD_MTU (72) with the existing ip 
tool from the iproute2 package the virtual 
CAN interface presents itself as a CAN FD 
interface.

While this virtual CAN driver did a good job 
when testing and enhancing the new CAN 
FD infrastructure and the user tools it should 
last more than a year until the first CAN 
FD hardware became available. The first 
CAN FD driver that emerged in the Linux 
mainline kernel was for the Bosch M_CAN 
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IP core version 3.0.1 (non-ISO). The driver 
was included in Linux 3.18 in December 
2014 and tagged as a ‘fixed non-ISO’ 
CAN FD controller later. In April 2015 the 
PEAK System PCAN USB (pro) FD driver 
was released with Linux 4.0. These USB 
adapters can be switched to be ISO/non-
ISO at controller configuration time.

With classic CAN the configuration was 
done with the ip tool from the iproute2 [7] 
package [8] in order to specify the bitrate and 
additional controller specific settings like the 
sampling-point, synchronization jump width, 
listen-only mode, triple sampling, one-shot 
mode, etc. 

The bitrate can be specified with either the 
time quanta (tq), propagation segment (prop_
seg) and phase buffer segments (phase_
seg1 phase_seg2) or by providing a numeric 
bitrate value which is then processed by the 
bitrate calculation algorithm inside the Linux 
kernel. The latter needs a set of controller 
specific bit timing constants that define e.g. 
the allowed minimum and maximum values 
for the time segments, bitrate prescaler, etc.

For CAN FD these bitrate specific settings 
have to be doubled to specify a second 
bitrate: The data bitrate when BRS is set.

This summarizes to these extensions:

 • Second bitrate infrastructure
 • Enable/Disable CAN FD mode
 • Configure ISO/non-ISO mode

When the CAN FD mode is to be enabled 
the data bitrate has to be specified and it 
has to be greater or equal to the arbitration 
bitrate which is placed in the first bitrate 
infrastructure known from classic CAN. The 
CAN FD mode setting changes the CAN 
interface MTU to CAN_MTU or CANFD_
MTU accordingly.

Depending on the CAN FD controller 
capabilities the ISO/non-ISO mode can be 
specified by the ip tool or it is fixed with the 
controller. E.g. the M_CAN IP version 3.0.1 is 
fixed to non-ISO, which cannot be changed 
at configuration time. On the other hand the 
PEAK USB FD adapters can switch between 

ISO and non-ISO at configuration time. The 
attempt to modify a fixed ISO/non-ISO flag 
leads to an invalid operation return code.

Finally the configuration of CAN FD 
controllers became very similar to the classic 
CAN controllers by just adding a second 
bitrate set for the data bitrate and two CAN 
FD specific configuration flags. The ip tool 
from the iproute2 package was updated 
for the release of Linux 3.15 to support 
the second bitrate and the CAN FD mode 
switching. The ISO/non-ISO configuration 
was integrated in Linux 3.19 but backported 
to Linux 3.18 to be able to tag the existing 
M_CAN driver properly.

ISO	15765-2:2015	with	CAN	FD

The ISO 15765-2 CAN transport protocol 
(TP) usually creates a point-to-point data 
connection using two defined CAN identifiers 
– one for each communication endpoint (e.g. 
diagnosis equipment and engine control 
unit). To be able to send data PDUs that 
do not fit into a single CAN frame the ISO 
PDUs are segmented using a bi-directional 
segmentation protocol. This protocol is 
implemented using (at least) the first byte 
of the CAN frame payload – the so called 
‘protocol control identifier’ PCI.

The PCI byte is defined as:

Table 1: ISO 15675-2 PCI
PCI function nibble bit value
SF Single Frame 0 0000xxxx
FF First Frame 1 0001xxxx
CF Consecutive Frame 2 0010xxxx
FC Flow Control 3 0011xxxx

While SF, FF and CF are sending PDU 
data from node A to node B the FC is a 
communication entity that is sent from 
node B to node A in order to throttle the 
communication flow according to the 
recipients (node B) needs.

When the content of the PDU fits into a 
single frame the SF frame is generated. 
Simplified the PDU content has to be 7 or 
less bytes on classic CAN as one byte is 
always consumed by the PCI byte.
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When the content of the PDU does not 
fit into a single CAN frame a FF frame is 
generated which contains the PCI byte, 
length information and some first data bytes 
of the PDU. When node B is able to receive 
the advertised number of bytes it answers 
with a FC frame to get more segmented data 
in the form of CF frames.
Due to the mandatory PCI byte which 
consumes at least one byte from each CAN 
frame payload the protocol overhead is 
equal or greater than 12.5% in classic CAN 
setups with 8 bytes per frame.

With CAN FD up to 64 bytes of payload can 
be transmitted inside a CAN frame. This 
moves the lower limit of overhead for ISO 
TP to 1/64 = 0,015625 ~ 1.6%. Even if we 
always need to add the standard overhead of 
the CAN Identifier, control fields and CRC in 
both cases this is a huge improvement which 
can be even extended when using a higher 
bitrate in the data section (BRS enabled).

With the knowledge from his own ISO15765-
2 [10] implementation for Linux and the CAN 
FD changes in Linux the author initiated the 
adaption of ISO TP for CAN FD at DIN/ISO 
committee in early 2013. As the Linux kernel 
was already supporting CAN FD at that time 
the changes of the existing classic CAN 
implementation assisted the conceptual 
work. Whenever a concept was discussed 
the public available implementation [9] gave 
an indication of the expectable complexity of 
that approach.

Table 2: ISO 15675-2 PCI for classic CAN
PCI	B[0] B[1] B[2] B[3] B[4]
SF 0000 LLLL data data data data
FF 0001 LLLL LLLLLLLL data data data
CF 0010 NNNN data data data data
FC 0011 FFFF Blocksize STm n.a. n.a.

(Formatting: All tables are cut after byte 4)

 • LLLL : PDU length information
 • NNNN : sequence number
 • FFFF : flow status information
 • Blocksize : 0 .. 15 (0 = disabled)
 • STm : Separation Time minimum
 • data : PDU payload data
 • n.a. : not assigned
 • B[x] : byte x in CAN frame payload

While CF and FC frames are not really 
affected by the increased CAN frame length, 
the possible PDU length of up to 63 bytes 
cannot be described in the four length bits 
available in the SF PCI byte.

To be able to discuss different CAN frame 
payload sizes the ‘link layer data length’ 
(LL_DL) has been introduced into the ISO 
document. As long as the LL_DL is 8 bytes 
– as known from classic CAN – the new ISO 
TP PDU segmentation concept behaves 
exactly like the former specification of ISO 
TP.

When the LL_DL is defined to be greater 
than 8 bytes (12, 16, 20, .., 64) the length 
information in the SF frame PCI is set to 
zero and the length information is stored 
in the following byte (Byte 1). Setting the 
length information in the SF PCI byte to 
zero is a protocol violation in the former ISO 
15765-2 specification which makes older 
implementations ignoring these SF frames. 
On the other side this concept reduces 
the maximum possible SF PDU size to  
LL_DL – 2 bytes (e.g. 62 bytes for CAN FD 
frames with 64 bytes).

As the configured LL_DL value is unknown on 
the receiver side, the receiver automatically 
adapts to the sender LL_DL depending 
on the frame length of the FF frame when 
starting a segmented communication.

Another enhancement of the FF definition 
is basically not CAN FD dependent. The 
12 bits for the FF length information allows 
PDU sizes of up to 4095 bytes. To be able to 
transfer larger PDUs (e.g. for measurement 
data, configuration data, bootloader update, 
etc.) a similar concept as known from the 
SF length was developed: By setting the 
former FF length information to zero, the 
sender indicates that the length information 
is available in the following 4 bytes. This 
allows PDU sizes up to 2³²-1 bytes (~4GB). 
When the new receiving implementation 
detects this former protocol violation it takes 
the next four bytes and can receive the 
‘jumbo’ PDU with more than 4095 bytes – 
even in classic CAN setups.
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Table 3 and Table 4 depict the PCI changes 
for the extended length information in SF 
and FF frames.

Table 3: SF PCI for LL_DL > 8
PCI	B[0] B[1] B[2] B[3] B[4]
SF 0000 0000 LLLLLLLL data data data

Table 4: FF PCI for PDU length > 4095
PCI	B[0] B[1] B[2] B[3] B[4] B[5]
FF 0001 0000 0 Len Len Len Len

The length information is presented in high-
byte first order as known from the former FF 
length information.

A useful aspect of CAN FD enabled ISO 
TP communication is the fact that classic 
CAN frames and CAN FD do not interfere 
in a CAN FD enabled setup. This means 
that the CAN architect may assign two 
CAN identifiers for the communication with 
classic CAN frames – and he may assign 
the identical(!) CAN identifiers for a CAN FD 
enabled communication. As classic CAN 
and CAN FD frames distinguish on the wire 
two independent ISO TP communications 
can be performed on the CAN bus in this 
way.

Finally the introduction of CAN FD frames in 
ISO 15765-2 leads to a mandatory padding 
in the case that the PDU payload doesn’t fit 
exactly into the CAN FD frame payload. In 
such cases the rest of the CAN FD frame 
shall be filled with 0xCC byte values as 
recommended by Bosch. The 0xCC data 
content allows the minimum of alternating 
bus level changes (EMI friendly) without the 
need to insert stuff bits.

ISO	15765-2:2015	with	Linux

While sending ISO TP PDUs in Linux is just 
about opening a socket and read/write PDU 
data to the given file handle the configuration 
of ISO TP communication is done by so 
called socket options.
These socket options are passed to the 
socket at creation time to specify values 
like block size (BS), STmin, extended 
addressing parameters or padding 
configurations. To be able to take advantage 

of the CAN FD implementation a single new 
socket option CAN_ISOTP_LL_OPTS has 
been introduced to configure the link layer. 
The data structure to configure the link layer 
options is defined in [11] as

struct can_isotp_ll_options {
        __u8 mtu;
        __u8 tx_dl;
        __u8 tx_flags;
};  

The element mtu specifies the generated 
and accepted CAN frame type. As described 
above the mtu can take values of either 
CAN_MTU (16) to handle classic CAN 
frames or CANFD_MTU (72) to work with 
CAN FD frames only.
The tx_dl element specifies the LL_DL 
value for generated CAN (FD) frames as the 
protocol stack adapts to in incoming LL_DL 
(rx_dl) automatically. The valid values for 
tx_dl are specified by valid CAN FD data 
lengths beginning with eight:
8, 12, 16, 20, 24, 32, 48, 64
N.B. when the mtu is set to CAN_MTU only 
a tx_dl value of eight is allowed.
Finally the tx_flags element content is set 
into the flags element of the canfd_frame 
structure at frame creation time to configure 
the CANFD_BRS setting for this socket. 

ISO	15765-2:2015	CAN	FD	performance

While the ISO TP implementation for 
CAN FD hypothesized an increased 
performance in calculations and on the 
virtual CAN interfaces the tests on real CAN 
FD hardware were awaited eagerly. With 
Linux 4.0 the driver for the PEAK USB FD 
was available in a stable operating system 
environment where it made sense to take 
measurements with the latest ISO 15765-
2:2015 implementation.

With a set of shell scripts the existing ISO 
TP command line tools have been arranged 
in a way that classic CAN and different CAN 
FD based communication setups can be 
brought into meaningful relation.

The setup consists of two Linux PCs each 
with an USB FD adapter connected to each 
other with a terminated twisted pair CAN 
line. 
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The timestamps are taken from the receiving 
node to make sure the entire PDU hit the 
CAN bus. The test applications transferred 
and received a PDU of 30.000 bytes with an 
arbitration bitrate of 500 kbit/s and different 
values for data bitrates (2/4/8 Mbit/s). The 
separation time minimum (STmin) was set 
to either 500µs or 100µs. As the test values 
for 500µs did not differ substantially for 
different data bitrates only a single table for 
the 500µs measurement is depicted below. 
To have a realistic and safe transport the 
block size was set to its maximum of 15.

Table 5: Test 500µs STmin 0.5/2 Mbit/s
CAN LL_DL BRS secs Bytes/s
classic 8 - 2,926 10.256
FD 8 no 2,933 10.228
FD 8 yes 2,915 10.295
FD 16 no 1,380 21.754
FD 16 yes 1,351 22.205
FD 32 no 0,791 37.926
FD 32 yes 0,662 45.385
FD 64 no 0,625 48.000
FD 64 yes 0,329 91.463

As the separation time was 500µs there 
could be seen no effect when increasing 
the data bitrate. At higher data bitrates the 
CAN bus had to handle fewer loads but bus 
load was not the value we wanted to pay 
attention at in this setup.

Table 6: Test 100µs STmin 0.5/2 Mbit/s
CAN LL_DL BRS secs Bytes/s
classic 8 - 1,460 20.562
FD 8 no 1,750 17.152
FD 8 yes 1,172 25.597
FD 16 no 1,085 27.649
FD 16 yes 0,548 54.744
FD 32 no 0,793 37.878
FD 32 yes 0,330 91.185
FD 64 no 0,614 48.859
FD 64 yes 0,225 133.333

Table 7: Test 100µs STmin 0.5/4 Mbit/s
CAN LL_DL BRS secs Bytes/s
classic 8 - 1,460 20.547
FD 8 no 1,749 17.162
FD 8 yes 1,166 25.751
FD 16 no 1,086 27.649
FD 16 yes 0,545 55.045
FD 32 no 0,792 37.878
FD 32 yes 0,265 113.207
FD 64 no 0,614 48.859
FD 64 yes 0,163 185.185

Table 8: Test 100µs STmin 0.5/8 Mbit/s
CAN LL_DL BRS secs Bytes/s
classic 8 - 1,462 20.533
FD 8 no 1,752 17.133
FD 8 yes 1,150 26.109
FD 16 no 1,085 27.649
FD 16 yes 0,545 55.147
FD 32 no 0,792 37.878
FD 32 yes 0,266 113.207
FD 64 no 0,614 48.939
FD 64 yes 0,131 230.769

With the relatively short STmin of 100µs the 
PDU data throughput can be increased by 
factor 11 (230.769 / 20.533) – even with a 
configured block size of 15 which requires 
the receiving node to acknowledge every 
15th CF frame. Without bitrate setting (BRS) 
the benefit of 64 byte CAN frames reduces 
to factor 2.5 due to the better overhead ratio. 
Finally the measurements points out that 
using CAN FD without BRS and with LL_DL 
of 8 preforms worse than classic CAN. As 
CAN FD introduces additional control bits, 
an increased CRC field size and a stuff bit 
counter in the latest ISO implementation this 
performance reduction was expected.

Summary

The new CAN FD protocol doesn’t only break 
the compatibility to classic CAN on the wire 
– it also breaks programming interfaces and 
extends configuration options by introducing 
new bitrates and payload lengths. This 
paper gives an insight how programming 
interfaces have been altered in Linux in 
an evolutionary way without putting the 
existing application programming concept 
into question. Some of the presented ideas 
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may be reused in other embedded setups 
– some may be too Linux specific to do so.
By today CAN FD is fully supported by 
Linux and by the provided tools to handle 
and configure CAN FD specific content 
and functionalities. Together with the free 
ISO15765-2:2015 implementation Linux is 
recommended as a stable and sustainable 
testing and product platform for future CAN 
FD applications.
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