
iCC 2015 CAN in Automation

03-13

CAN	FD	filter	for	Classical	CAN	controllers

Kent Lennartsson, Kvaser AB

Even	if	all	new	CAN-controllers	will	support	both	CAN	FD	and	Classical-CAN	(referred	
as	C-CAN	in	the	rest	of	the	text)	it	is	impossible	to	use	CAN	FD	frames	on	a	CAN-bus	
as	long	as	there	are	old	C-CAN	controllers	connected	to	the	CAN-bus.	This	paper	will	
describe	how	it	is	possible	to	add	some	logic	to	the	legacy	C-CAN	controllers	to	make	
it	possible	to	connect	them	to	a	CAN-bus	with	CAN	FD	frames.	If	this	logic	is	combined	
with	 a	CAN-driver	 in	 a	 standard	 SO8	 package,	 it	 is	 possible	 to	make	 all	 old	C-CAN	
units	CAN	FD	tolerant	just	by	replacing	the	CAN-driver	circuit.	This	will	be	as	simple	
as	swapping	two	 ISO	11898-2	driver	circuits	and	should	demand	very	 limited	testing	
and	validation.	This	logic	complies	with	all	rules	in	the	CAN-protocol	as	described	in	
ISO	11898-1.

To protect the legacy C-CAN controller it
will be necessary to add filter-logic between
the C-CAN controller and the CAN-driver
as shown in figure 1. This logic is relative
complex, similar to logic for devices with
partial networking, and could consist of a
FPGA or be integrated in the CAN-driver
logic. As seen in figure 1 there are two sides
with the TX and RX signals, one between
the CAN-controller and the logic and one
between the logic and the CAN-driver.

To distinguish the two sides the signals are
identified as TXc and RXc on the CAN-
controller side and TXd and RXd on the
CAN-driver side. At start when the CAN-bus
is idle the RXd signal is copied unchanged to
the RXc signal and the TXc signal is copied
unchanged to the TXd. This is visualized
in figure 1 by the two dashed lines passing
through the logic connecting RXd to RXc
and TXc to TXd. In a system where only
Classical CAN-frames are used the logic
will just add some nanoseconds delay in

passing the signals unchanged through
the logic. The function of the logic has four
different states, as listed in table 1.

Table 1
STATE Description
Bypass Logic is transparent
FDF_check Search for CAN-FD frames
Mimic_frame Replace FD with legacy frame

Syncing Synchronize EoF by using
Overload-frames

The	bypass	state

This is the basic state where the logic
is transparent and the TXc- and RXd-
signals pass through the logic without any
modification. Even if the logic does not
modify the TXc and RXd signals, the logic
will process the RXd-signal with logic very
similar to a CAN-FD controller. When the
logic is receiving a CAN-frame from the
CAN-bus it is processed in the same way
as any CAN-FD controller, and just before
the FDF-bit is reached the logic will switch
to the FDF-check state. This logic, Bypass-
checker in figure 1, will also calculate all
three CRC-values from the SOF up to
FDF-bit. To process the four connected
signals the FPGA device will also need:
a power supply, an oscillator to clock the
logic, the configuration of the CAN/CAN-FD
bit-rate and the bit-parameters for the
CAN-bits.

iCC 2015 CAN in Automation

03-14

The	FDF_Check	state

In this state the logic will be separated in
two parts, as seen in figure 2, one CAN-FD
part processing the CAN-FD frame received
on the TXd line. The other part is the logic
controlling the RXc signal to the Classical
CAN-controller during the time when there
are CAN-FD frames on the CAN-bus.
The first logic part interfacing TXd and RXd
will keep TXd recessive and will receive the
CAN-FD frame from the RXd signal. This
CAN-FD frame will not be stored in the logic,
but the frame will be processed according
to all rules for a CAN-FD frame and CRC-
17 and CRC-21 used by CAN-FD will be
inherited by this logic to complete the error-
checking of the CAN-FD frame received
from CAN-bus.

The second logic, the Mimic-part, interfacing
RXc and TXc will inherit the CRC-15 and
take control of the RXc signal.
The FDF-bit will always be dominant for
Classical frames and recessive if the CAN-
frame is in the FD format. The Classical CAN
controller cannot decode a CAN-FD frame
where the FDF-bit is recessive. Due to this
the logic will force this FDF-bit dominant on
the RXc line independent of the RXd signal
level. If the FDF-bit is detected dominant on
the RXd signal from the bus will it assume
that the CAN-frame is a Classical CAN frame
and the logic will return to the Bypass State.
If the FDF-bit on the RXd line is recessive
the logic will switch into the Mimic_frame
State.

The	Mimic_frame	state

The first logic will continue receiving the
CAN-FD as described in the FDF_check
state.

The task for the logic interfacing the
Classical CAN-controller is to make up the
end of the CAN-frame that was started on
the CAN-bus. To do this the logic will use the
CRC-15 updated with dominant FDF-bit and
will continue to send the four DLC bits set
to zero. After the DLC the logic will send the
calculated CRC-15, ACK-bits and the End of
Frame.

There is very little the logic can do during the
time the CAN-FD frame or the mimic frame
are in progress, because they have to follow
all CAN-rules for a CAN-frame.

When either CAN-frame reaches the CRC-
delimiter it is necessary to take some action.
If the dominant edge at the ACK-bit following
the CRC-delimiter is not in sync between the
CAN-FD frame and the mimic frame there
will be a violation of the CAN-rules. As soon
as the mimic or the CAN-FD frames reach
the CRC-delimiter, the logic will switch to
Synch-State.

As seen in figure 2 an Error-condition will
change the behavior of the logic. How
to handle Errors is described later in the
text.

The	Syncing	state

According to the CAN-protocol any CAN-
controller can start sending a new CAN-
frame after the three intermissions-bits in
the previous CAN-frame. In almost all cases
the mimic-frame will have a length different
from the CAN-FD frame on the bus. To have
a solution that matches the CAN-protocol it
is necessary to force the Intermission bits in
sync between the CAN-FD frame on the bus
and the mimic CAN-frame.

At start this seems impossible but Uwe
Kiencke, the father of CAN, included
something called Overload frame 1983,
which can be used to solve this problem.
The overload frame has a format identical
to an Error-frame but the Overload frame
must only be started in the IM1- or the IM2-
bit. The intention with the Overload frame is
to make it possible for any receiver on the
CAN-communication to delay the start of the
next CAN-frame.

iCC 2015 CAN in Automation

03-15

This basic Overload function will delay
the critical section, but not automatically
synchronize the IM1-bit on the CAN-FD
frame with the mimic CAN frame. To solve
the synchronization problem we have
to scrutinize the freedom Uwe Kiencke
provides in how we can utilize the Overload
frame.
This list below defines the different rules,
defined by Uwe Kiencke, that apply to the
use of Overload frames in the CAN protocol
as included in ISO 11898-1.

 • An overload frame is transmitted
following end of frame, error delimiter
or overload delimiter instead of
intermission bit 1 or 2. This gives
the filter some room to adjust some
phase-error between the two sides
by placing the first dominant bit in the
Overload-flag little late in the IM1-bit
to be better synchronized with the
phase in the bits on the other side of
the filter.

 • An overload frame consists of one
overload flag and one overload
delimiter.

 • The overload flag is transmitted as
6 dominant bits and the overload
delimiter is 8 recessive bits.

 • The Overload-frame is defined to
follow the same rules as the active
Error-frame.

 • Fault confinement rule 6 in the
standard allows 7 consecutive
dominant bits after sending an
overload flag. In this case the filter
will start the Overload-frame and all
other CAN-controllers will respond
with their own Overload-flag of
6 dominant bits. From this it is obvious
that there always will be at least
7 dominant bits as the first part of an
Overload-frame, the Overload-flag.
After this first part all CAN-controllers
will accept 7 additional dominant
bits.

 • A unit receiving an overload flag in
intermission bit 1 will start transmitting
its own Overload-flag with 6 bits, then
tolerates 7 more dominant bits.

 • Error counters are incremented
after detecting the 14 consecutive
dominant bits.

 • The 14 bits do not include the
received dominant bit starting the
overload frame from the beginning.
This is verified by the Bosch VHDL
Reference Test.

 • The filter will have to use the potential
provided by the standard as it will
be required to send an Overload
flag with 7 to 14 bits followed by the
Overload delimiter. The effect of this
can be kept hidden inside the filter.

 • Every overload frame starts with a
falling edge providing synchronization
of the sampling point to the following
bits in the Overload-frame.

 • A maximum of two overload frames
is allowed by the CAN specification.
There is no error handling action
specified when this requirement
is not followed. All Classical-CAN
controllers tested so far accept
hundreds of Overload-frames without
causing any change in the Error-
counters.

By using the rules above, it is possible to get
the CAN-FD frame from the CAN-bus in sync
with the internal Classical-CAN controller by
using only the two allowed Overload-frames
after the CAN-FD frames on the CAN-bus.
If the CAN-FD frame is very long in time
compared to a C-CAN frame it could be
necessary to place several Overload frames
on the C-CAN side to delay this part until
the CAN-FD frame has ended. The worst
case would be a CAN-FD frame without a
bit-rate switch holding 64-bytes of data with
a pattern that will give a maximum number
of stuff-bits. Such frames could be 625-bits
long from the FDF-bit up to the IM1-bit,
demanding about 28 Overload-frames on
the C-CAN side of the filter to get the IM1-bit
in sync.

Syncing:	detailed	description

The basic function of the synchronization is
visualized in figure 3. The rough adjustment
starts at the edge of the ACK-bit, 827, in the
mimic frame and 828, in the CAN-FD frame.
By measuring the time between these edges
it is possible to get the phase error between
the two CAN-frames. In this example the
difference is 2.5 bits.

iCC 2015 CAN in Automation

03-16

There is not a strict correlation between the
arbitration and the data-rate so the phase
difference can be a fraction of a bit and in this
case the data-rate was twice the arbitration
rate and the number of data-bits was not
even, which resulted in a half bit difference.
In this case the mimic frame is 2,5 bits ahead
of the CAN-FD frame and it will be necessary
to delay the IM-bits at least two bits. There is
no available mechanism in CAN to delay the
IM-bits because they will always be located
after the seven EOF bits. The CAN-protocol
does support the possibility to replace the
IM-bits with an Overload frame.

When the mimic frame reach the IM1-bit is
the CAN-FD frame still in the EoF and it is
necessary to delay the IM-bits to get them
in sync with the CAN-FD frame. The only
possible solution provided by the CAN-rules
is to start an Overload-frame indicated by
833.

Normally the Overload flag will end after
seven bits but in this case the filter will
extend the Overload flag by sending two
more dominant bits 834. The result of this
is that the expected bits 811-813 will be
replaced by the Overload flag 833 plus
the two dominant bits 834 making up an
Overload-flag with 9 dominant bits. When
the CAN-FD frame has reached the first

IM1-bit it is necessary to take some action.
It is not possible to allow the three
Intermission IM1 to IM3 yet, because after
the IM3-bit it is possible for any unit on the
CAN-bus to start sending a CAN-frame. This
is not acceptable because that will collide
with the Overload-flag on the other side of
the filter with the mimic frame. The only tool
available to prevent this is to start sending
an Overload-frame 835. In this case it is not
necessary to extend the Overload-flag.

When 836 is reached there is nothing
more to do, because all units will start
counting recessive bits after the Overload-
flag has stopped and when they have
counted the 8 bits in the Overload
delimiter and the three Inter-Mission bits any
module will start sending concurrently in the
SOF-bit if they have a CAN-frame to send,
and the Arbitration will be done according to
the CAN-protocol.

Syncing:	Variants	of	overload	frames

Figure 3 showed the solution for a particular
CAN-FD frame. Even if CAN-FD has a
relative fixed format of bytes there is a great
variation in length depending on how many
stuff-bits there are and which bit-rate is used
in the data-part. CAN-FD can be used with
an oscillator with relative low tolerance and

iCC 2015 CAN in Automation

03-17

as a result of this you will get any number of
clock-cycles between the edge in the ACK-
bit, 827, in the mimic frame and the ACK-bit,
828 in the CAN-FD frame. For this reason it
is necessary to find a generic solution that
is not too complex, which can handle any
deviation in time between those two edges.
The variants shown in figure 4 are all basic
variants to be used by the filter.

Frame 930 in figure 4 is the shortest mimic
frame with a CRC without stuff-bits. Frame
901 is the shortest CAN-FD possible and
to get it requires a very high bit-rate and no
data. As can be seen the CAN-FD frame
901 will have the ACK-bit already in the DLC
of the mimic frame 930. The IM1-bit in the
CAN-FD frame is located half-way into the
CRC-part of the mimic CAN-frame. To delay
the next message on the CAN-bus, the filter
will place an Overload-frame on the CAN-
bus after the CAN-FD frame. This will result
in an Overload-flag from all units connected
to the CAN-bus, resulting in 7 dominant bits.
The filter will add three more dominant bits
to ensure that the Overload flag ends at
the same time as the ACK-bit in the mimic-
frame ends.

The ACK-delimiter together with the seven
bits in the EOF will match the length of the
Overload-Delimiter and this way, all CAN-
controllers are in sync at the IM1-bit and
the CAN-bus is prepared to handle the next
CAN-frame according to the rules in the
CAN-protocol.

The next CAN-FD frame, 902 is a little
longer and the ACK-bit starts one bit later.
This case is almost identical to the process
for handling 901. The only difference is that
the Overload-flag will be one dominant bit
shorter. The CAN-FD frame 903 and 904
is almost the same as 902 with the only
difference being that the Overload-flag is 8
respective 7 dominant bits long.

Frame 905 is a little more complicated. The
previous method can´t be used because
it is impossible to make the Overload-
flag shorter than 7 dominant bits. Still it is
necessary to place an Overload-flag on the
CAN-bus because the mimic frame has not
ended yet. The best we can do is to place
an Overload-flag on the CAN-bus that will
result in 7 dominant bits followed by the
Overload delimiter with 8 bits.

iCC 2015 CAN in Automation

03-18

This Overload delimiter will end somewhere
in the IM1-bit. At the moment all CAN
units are in the receiving state because
the pervious CAN-FD has finished and the
mimic CAN-frame has been sent from the
filter. A receiving CAN-controller will accept
the Overload frame to start in either the
IM1-bit or in the IM2-bit or even in the last
bit in the last EOF bit as well as in the last
bit in the Overload delimiter. By starting the
Overload flag simultaneously on both sides
of the filter, both sides will be in sync and all
CAN-controller will run parallel and will start
the next CAN-frame correctly according to
the CAN-rules. The resulting CAN-frames
in this case will be 905 in combination with
931 or possible 933 depending where it is
necessary to put the edges to adjust the
phase error less than one CAN-bit.

The next CAN-FD frame, 906, is very similar
to 905. Again the CAN-FD frame ends
too early and it is necessary to place an
Overload-flag without any extension similar
to 905. Even if this Overload frame is as short
as possible will it end too late to start at the
same time as the Overload-flag starting after
the mimic CAN-frame. Again it is the location
of this edge caused by the first dominant bit
that will define the location in time for the
IM1-bits. The filter has full knowledge of
where the Overload-flag, after the mimic
frame, does start, so it will be possible to
start this Overload-flag synchronized at the
bit-edges of the bits in the Overload-flag
on the CAN-bus. In this case the Overload
flag after the mimic frame, 934, will be
extended and will end exactly end where
the Seventh Overload-flag frame, after the
CAN-FD frame 906, ends. This will put the
two Overload delimiters in sync even if the
Overload-flags contain different amounts of
dominant bits.

The following frames 907 to 911 are
processed by the same rules as 906, but
because the CAN-FD frame ends even later
it is necessary to increase the number of
dominant bits in the Overload-flag on the
mimic side to make it possible to get the
Overload-delimiter in phase. In the figure
907 matches 935, 908 matches 936, 909
matches 937, 910 matches 938 and 911
matches 939.

When the CAN-FD frame ends later than
the ending in the frame 911 it is not possible
to extend the Overload-flag at the C-CAN
side because it has already reached 14
dominant bits and that is the maximum
number of dominant bits allowed in a CAN-
communication. As shown in figure 4 it is
now possible to extend the Overload-flag
after the CAN-FD frame with seven extra
dominant bits, in total 14 bits, to push the
Overload-delimiter to be located in the same
instance in time as you will get if you have
an ordinary Overload-flag with 7 dominant
bits, as in the mimic frame, 931. In figure 4
you will see the process of CAN-FD frame
912 to 919 is very similar to the process of
the CAN-FD frames 901 to 904. In this case
the task is to align the Overload-delimiter
after the CAN-FD frame with an Overload-
delimiter after the mimic-frame where in
the CAN-FD frames 901 to 904 were an
alignment to an End Of Frame EOF.

The only difference in the CAN-FD frames
912 to 919 is that the Overload flag must be
made shorter and shorter to ensure that the
Overload delimiter will be aligned with the
Overload frame after the mimic frame, 931.

In the same way the CAN-FD frames 905
to 911 was aligned with mimic frames as
shown by 933 to 939 respectively, CAN-FD
frame 920 to 926 will be aligned with 933 to
939. A skilled person will see that all possible
solutions are covered by the solution used
for any of the CAN-FD frames 912 to 926
and all other solutions are a variation of any
of those 15 solutions. This is of course given
by the fact that an Overload-frame with 15
bits can never be out of phase more than
15 bits, because it is repeated every 15 bits.

Oscillator	tolerance

The filter is just a CAN-controller and the
demands on this will be the same as on
any other CAN-controller connected to the
CAN-bus. This will demand that this filter
do have the same bit-time configuration
and oscillator tolerance as all other units
connected to the CAN-bus. When used
as a filter in a unit the best will be to use
the same oscillator as the C-CAN
controller.

iCC 2015 CAN in Automation

03-19

As for any CAN-controller will the behavior
improve if the oscillator tolerance is better
than most other CAN-controllers connected
to the CAN-bus.

There are some more calculation and test
to ensure the necessary oscillator tolerance
when this filter is used. The only difference
with this solution is the longer Overload flag
that could demand a little better oscillator
tolerance.

The necessary oscillator tolerance is given
by some equations:

Rule II:

Rule II will change to:

Even if there is problem it should be hidden
by the ruling for the SOF-bit that can start
anywhere after the sample-point in the IM2-
bit up to the sample-point in the SOF-bit and
still be a valid start of the next CAN-frame.

As described in my paper from ICC 2012 in
Paris is it possible to make dominant edges
also in the recessive bits. In the EoF or in
the Overload Delimiter is it possible to place
an dominant edges in the Sync-Segment
in every bit as long as this dominant
level returns to recessive before the bit is
sampled by the receiver. This dominant
edge will result in a Soft-Synch in the
receiving C-CAN controller and by this rule
in the CAN-protocol is it possible to move
the sample-point and the bit-edge the length
of the Synch-Jump-Width (SJW) in every of
the 7 bits in EoF or Overload delimiter.

This function is very secure to implement
in a filter because the connection between
the filter and the C-CAN controller is a local
point to point communication. If the filter is
connected to C-CAN bus will it also work
as long as there is only one filter-bridge
between a CAN-FD bus and a C-CAN
bus.

To have several filter-bridges units sending
dominant edges in the EoF will result in
several edges, one for each filter-bridge
unit, that will result in a pattern of edges
that will cause different Synchronization
in different units depending on the relative
distance along the CAN-bus.

Error-Frames

The filter solution itself will not cause
any Error-Frames, but as in any CAN-
communication there are possibilities for
faults that will violate the CAN-rules. The
probability for such Error on the CAN-
bus will be the same whether a unit has
a filter or not, because the filter is just a
CAN-controller connected to the CAN-bus.
If the filter detects an Error-condition on
either side, the filter will place an Error-
Frame on both sides. This will ensure that
all units’ Error-counters will update in the
same way as they would do if they were
directly connected to the CAN-bus. The
only difference will be if the Error-condition
is detected during sending of an Overload
Flag on the other side. In such a case the
filter will extend the Overload flag to more
than 14-bits which will increase the Error-
counter but will not cause an Error-Frame.

Even if the probability for an Error between
the filter and the C-CAN controller is very
low, an Error-Frame sent from the C-CAN
controller will also be sent on the CAN-
bus, to ensure that all units keep the Error-
counters as identical as possible to a case
where there are no filters used.

Performance

There is a penalty in performance; because
as soon as you introduce a CAN-FD frame it
will have a worst case length of the CAN-FD
frame plus two ordinary Overload-frames
with 15-bits. This is roughly the same penalty
you will get if you switch from standard to
extended CAN-ID. This should be a low
cost when you add a few CAN-FD frames
or if you use CAN-FD frames under special
condition, like programming units.

	

	

iCC 2015 CAN in Automation

03-16

Kent Lennartsson
Kvaser AB
Aminogatan 25A
SE-43153 Mölndal

Tel. +46 31 886344
Fax +46 31 886343
kent@kvaser.com
www.kvaser.com

References
[1] ISO 11898-1 in all variants
[2] ISO 11898-2 in all variants

