
iCC 2017 CAN in Automation

04-1

CAN frame time-stamping
-	supporting	AUTOSAR	time	base	synchronization	-

Florian Hartwich, Robert Bosch GmbH

Introduction

In currently existing AUTOSAR systems,
time base synchronization is implemented
without dedicated hardware support. When
the new CiA 603 standard is imple-mented
into CAN controllers, future ECUs will have
this dedicated hardware support for time base
synchronization. This paper describes which
hardware-based time-stamping functions
are needed to improve the accuracy of the
synchronization in a way that allows the new
ECUs to be inte-grated into existing systems.

AUTOSAR	synchronization	method

In AUTOSAR systems, time is generally
represented as a 64 bit number. The actual
time value in an ECU is given by adding the
value of a 32 bit free running timer counter
to the value of a 64 bit time base register. An
ECU may be linked to several time domains,
with different time base registers but
sharing the same timer counter. Each time
domain has one time master and several
time slaves. The time master synchronizes
the time slaves by propa-gating, over the
communication network, the time base value
to the time slaves.

A time base can be distributed between
networks that are connected by a time
gateway. The time gateway receives the
time base as time slave from one network
and propagates it as time master to the
other networks. In the following only the
synchronization of the time base over the
CAN bus is regarded.

Synchronization	over	CAN

In the first step of the synchronization
procedure, the time master saves the actual
time T_0 at the beginning of the procedure
in seconds-portion s(T_0) and nanosec-
onds-portion ns(T_0), as well as the actual
value T_0_C of its timer counter (a 32 bit
number). The time master writes s(T_0)
into the transmit buffer for the synchroni-
zation message SYNC and requests the
CAN controller to transmit SYNC. When
the CAN controller has successfully
transmitted SYNC, this event triggers the
capture the actual timer counter value
as Tx_Stamp. From this the time master
cal-culates T_Tx, which is the time from
s(T_0) to the end of SYNC’s transmission:
T_Tx = ns(T_0) + ns(Tx_Stamp - T_0_C).

The	ever	increasing	number	of	electronic	control	units	in	modern	cars,	connected	by	
networks	to	form	a	distributed	computing	system,	led	to	the	development	of	an	open	
industry	 standard	 for	 automotive	 E/E	 architectures,	 AUTOSAR	 (AUTomotive	 Open	
System	 ARchitecture).	 It	 standardizes	 a	 layered	 software	 architecture,	 interfaces,	
APIs,	and	a	runtime	environment	that	allow	a	modular	design	method	where	re-usable	
software	 components	may	 be	 transferred	 inside	 the	 system.	 The	 execution	 of	 soft-
ware	tasks	that	are	distributed	between	different	ECUs	requires	that	 the	ECUs	share	
a	common	time	base.	AUTOSAR	defines	methods	how	to	synchronize	the	time	bases	
between	ECUs	that	are	connected	to	the	same	network.
The	 new	 CiA	 603	 standard	 specifies	 a	 hardware	 time-stamping	 concept	 to	 be	
imple-mented	in	future	CAN	controllers.	This	concept	is	compatible	with	the	AUTOSAR	
syn-chronization	method,	allowing	to	use	both	software	and	hardware	time	stamping	
in	the	same	network.	The	hardware	time	stamping	is	independent	of	interrupt	response	
times	 and	 results	 in	 higher	 accuracy	 of	 the	 time	 base	 synchronization.	 This	 paper	
de-scribes	the	new	time-stamping	concept	and	its	implementation	into	CAN	IP	modules.

iCC 2017 CAN in Automation

04-2

In the second step of the synchronization
procedure, the time master writes T_Tx (a
32 bit number representing nanoseconds) into
the transmit buffer for the follow-up message
FUP. The data of FUP is com-plemented by
two additional bits that sig-nal whether there
was an overflow of the timer counter or in the
calculation of T_Tx. For the time master, the
synchronization procedure ends when the
CAN controller has transmitted FUP.

SYNC and FUP are transmitted using the
same CAN identifier; additional coding in
the data field distinguishes SYNC from FUP,
identifies the time domain, and ena-bles error
checking. While an ECU uses only one CAN
identifier if it is time master for different time
domains, the CAN proto-col requires that
other time masters (of other time domains) on
the same CAN bus use different identifiers.

A time slave starts the synchronization
procedure at the reception of SYNC, which
triggers the capture of its timer counter
value as RX_Stamp and provides the se-
conds-portion of the time master’s T_0. The
capturing of Tx_Stamp in the time master
and Rx_Stamp in the time slaves is triggered
in all nodes by the end of the same CAN
data frame, SYNC. The different nodes see
this event with a phase shift of less than one
CAN bit time.

The time slaves enter the second step of
the synchronization procedure at the re-
ception of FUP. This message enables the
time slave to calculate, based the value of
its timer counter TC, the received s(T_0),
and its Rx_Stamp, the actual time Ta:
Ta = s(T_0) + T_Tx + ns(TC – Rx_Stamp).

Repeated synchronizations allow the time
slaves to adjust their local clock speeds. It is
not necessary to increment the timer counter
in all nodes at the same speed, because in the
SYNC or FUP messages, all time information
is transformed into real time units, seconds in
SYNC and nano-seconds in FUP.

Advantage	of	time-stamping	in	hardware

AUTOSAR’s specification of time synchro-
nization over CAN is based on synchroni-
zation messages that trigger interrupts

at frame transmission (time master) and
re-ception (time slaves). The interrupt service
routines capture and compare the values of
free running counters and calculate, with
the help of a follow-up (FUP) message, the
actual time offset between time master and
time slaves.

The accuracy of this method depends
on the interrupt response times after the
synchronization message. The synchrony
between the time stamps Tx_Stamp
and Rx_Stamp is worsened by latency
jitter.

When the timer counters are captured in
hardware, directly triggered by the CAN
controllers, instead of being captured by
the interrupt service routines, latency jitter
is avoided and the accuracy of the syn-
chronization is improved.

The purpose of the new CiA 603 standard
is to specify, beyond the functions already
specified in ISO 11898-1, which functions
CAN controllers should provide to support
the AUTOSAR synchronization method.

CAN	time-stamping	in	hardware

In ISO 11898-1, time-stamping is specified
for the support of ISO 11898-4, TTCAN.
These time stamps are captured at the
start of a frame and they are 16 bit num-
bers, using the CAN bit time as time
steps. In current AUTOSAR systems, time
stamps are captured at the end of frames,
by the message’s transmission or reception
interrupt service routines. They are 32 bit
numbers, using smaller time steps.

The gradual, non-disruptive integration
of new nodes with CAN time-stamping in
hardware into existing systems requires that
the hardware time stamps are also captured
at the end of the frames. To achieve the
necessary precision, the time stamps
need to be 32 bit numbers, captured from
timer counters with time steps of less than
one CAN bit time. These fea-tures enable
hardware-based time-stamping nodes to
participate in the synchronization procedure
with software-based time-stamping nodes in
the same network.

iCC 2017 CAN in Automation

04-3

CiA 603 specifies that time stamps are
captured at the end of frames, when the
frame becomes valid according to the CAN
protocol. That is the last-but-one bit of the
end-of-frame field for the received SYNC
messages and the last bit of the end-of-
frame field for the transmitted SYNC mes-
sages. These are the same conditions
that trigger the message’s transmission
or reception interrupt flags. The one CAN
bit time difference (plus the signal delay
from the receiver’s ACK to the transmitter)
between the two triggers is well known
and can be considered in the time slave’s
cal-culations.

Time stamps are captured from a free-
running 32 bit wide counter that is incre-
mented in steps of at least 1 ns and at
most 1 µs; it counts upwards and overruns
to zero. The counter may be inside the
CAN controller or outside; its value can
be read anytime by the software. Several
CAN controllers may share the same timer
counter.

It is not necessary to store a time stamp
for each message transmitted on the CAN
bus. The time master needs a time stamp
only for the transmitted SYNC messages,
its capture can be controlled by that mes-
sage’s transmit buffer configuration. A time
slave also needs to store time stamps only
for the SYNC messages, but storage is
needed for two time stamps since the CAN
controller’s acceptance filtering cannot
distinguish between SYNC and FUP mes-
sages that use the same CAN identifier.

In CiA 603, it is mandatory to provide stor-
age for at least 2 Rx_Stamps and at least
one Tx_Stamp, or at least 2 time stamps if
storage is shared between them. In order
to be able to support multiple time bases
concurrently, it is recommended to provide
at least four times the mandatory minimum
storage. AUTOSAR systems may have up
to 16 synchronized time bases.

Separate time-stamping unit

Not all existing CAN controllers support
time stamping of messages. If they do,
time stamps are usually 16 bit wide and are

stored inside the message buffer structure.
If the position is not configurable, the time
stamps are captured at the start of frame.

Changing the width of the stored time
stamps to 32 bits (half of a Classical CAN
data field) would require restructuring and
enlarging the CAN message storage area.
The CAN driver software would need to be
adapted to the new structure.

The solution to this problem is to implement
the new hardware time stamping function
not into the CAN controller itself, but into
a separate module, a Time Stamping Unit
TSU. The CAN controller is only minimally
modified, keeping its controller host interface
unchanged.

The interface between the CAN controller
and the TSU can be kept simple. The CAN
controller provides trigger signals to cap-
ture the time stamps and the TSU provides
information that indicates which time stamps
belong to which messages. If there is more
than one CAN controller, they may share
one TSU, otherwise each CAN controller is
connected to a dedicated TSU.

The TSU has its own controller host inter-
face CHI, to configure and control its func-
tion and to read the captured time stamps.
The TSU may include the free running
timer counter with an optional prescaler,
alternatively, an external timer counter
may be connected. The timer counter val-
ue may be cascaded from one TSU to the
next and it may be used as time base for
legacy time-stamping with less resolution.

The time stamps are stored inside the
TSU in a circular buffer, addressed by a
counter. The elements of the circular buffer
can also be read by via the CHI. Each
time a capture is triggered, the address
counter is incremented; the counter over-
flows to zero. The address counter value
is provided to the CAN controller where it
is stored with the message buffer, instead
of the 32 bit time stamp itself.

The number of time stamps stored in the
TSU can be decided by a generic parame-
ter, changing the size of the module. The

iCC 2017 CAN in Automation

04-4

interface signals of the TSU are, with the
exception of the address counter width, not
changed by the size of the circular buffer.

The TSU may optionally include software
debug support, flags that show whether a
time stamp register contains new data or
whether unread data was overwritten.

Figure 1: External Time Stamping Unit

An example for the interface between TSU
and CAN controller is shown in Figure 1.
The timer counter input vector is not needed
when the TSU implements an internal timer
counter. If several TSUs are cascaded, they
share the same timer counter.

The TSU’s interrupt output may optionally
be used to signal the capture of a new
time stamp or when a time stamp register
was overwritten before it was read. It is not
needed for time base synchronization.

The CAN controller activates the capture
trigger for relevant messages, e.g. when
a message is received that is recognized
as SYNC message by CAN’s acceptance
filtering or when it is transmitted from a
correspondingly configured transmit buffer.

The cyclic stamp counter value (three bits
wide for storage of 8 time stamps) shows
into which time stamp register the currently
triggered time stamp is stored. In CAN

controllers designs that already support
(shorter) message time stamps, this coun-
ter value can be stored instead of the time
stamp, generally for all messages or only for
SYNC messages.

Conclusion

In CAN networks, the accuracy of AU-
TOSAR’s method for time synchronization
can be improved when the CAN controller
captures time stamps directly triggered by
CAN frames. The new standard CiA 603
specifies the additional features CAN con-
trollers need to provide in order to support
the AUTOSAR time synchronization.

Introduction of the additional features into
existing CAN controller designs could
require structural changes that would also
affect low-level driver software.

The implementation of CiA 603 into existing
and new CAN controller designs is simplified
when the new features are moved into a
separate time stamping unit. The changes
to the CAN controller are minimal, reducing
verification effort while allowing to adapt the
time stamp number.

Capture-Trigger

CAN Controller

TSU
Time Stamping Unit

(N Time Stamps)

CPU-Bus
Reset
Clock

Interrupt

Timer-Counter
Output

Time-Counter
Input 32 32

16

Internal_Time_Base*15:0+

ceiling(log2(N))

iCC 2017 CAN in Automation

04-5

References
[1] CiA 603, Frame time-stamping, Requirements

for network time management
[2] AUTOSAR Release 4.2.2, Specification of

Time Synchronization over CAN

Florian Hartwich
Robert Bosch GmbH
AE/PJ-SCI
Postfach 13 42
DE-72703 Reutlingen
Tel.: +49-07121-35-2594
Fax: +49-0711-811-5142594
florian.hartwich¤de.bosch.com
www.can.bosch.com

