
iCC 2017 CAN in Automation

05-14

CAN	driver	API	-
migration	from	Classical	CAN	to	CAN	FD

Uwe Koppe, Johann Tiderko, MicroControl GmbH & Co. KG

In contrast to other network systems, there
has not been a development for a
standardized CAN bus application
programming interface (API), like e.g.
Berkeley sockets for Ethernet socket
access. In fact, we can observe that
silicon manufacturers or PC interface
board manufacturers provide unique
hardware abstraction layer (HAL) libraries
for supporting their interfaces. The user
benefit is of course a fast development of
the target application, however, it is rather
complex to port this application to another
hardware architecture. The discussed APIs
in this paper have been selected because
of the gained work experience and the
freely available documentation. In order to
achieve comparison criteria for the CAN
APIs the specifications CiA 601-2 [1] (CAN
controller interface specification) and CiA
603 [2] (Requirements for network time
management) are introduced briefly. These
specifications have been developed within
the CAN in Automation e.V. by the IG
(interest group) CAN FD.

The CiA 601-2 specifies the interface
between protocol controller (i.e. CAN FD)
and the host controller in order to reduce the
effort for adapting the low-level CAN driver.
A CAN controller shall support the finite
state automaton (FSA) depicted in figure
1. In addition, it is advisable to support the
states self-test, receive-only and low-power.

The CAN controller may have either
dedicated messages buffers (a buffer that

holds only one specific CAN message)
or general message buffers, which are
organized as single buffers, FIFO queue or
priority queue.

Figure 1: Minimum FSA for CAN

The number of message buffers is not
specified, current CAN IPs support up to 128
message buffers. With regard to message
reception an acceptance filtering for
message ID reception shall be configurable
(i.e. filter mask for identifier). For message
transmission it is possible to support internal
arbitration, a FIFO or a buffer number to
determine the transmit sequence. For each
transmit buffer it shall be possible to set the
FDF bit, respectively BRS bit, individually. A
message marker is an optional feature that
allows to set a „label“ for a message. The
message marker is stored in an event FIFO
after transmission which allows the user to
determine the transmission order of multiple
messages. The CAN status interface shall
give information about the current CAN error

The	new	features	of	CAN	FD	also	have	an	impact	on	the	CAN	driver	layer.	Functions	
have	 to	 be	 provided	 to	 switch	 the	 bit-rate,	 handle	 longer	 data	 frames	 and	 evaluate	
the	error	 indicator.	 In	addition,	compatibility	 to	 the	existing	API	should	be	observed.	
The	document	 gives	 an	overview	of	 existing	CAN	drivers	 for	AUTOSAR1,	 can4linux,	
CANpie	FD,	CMSIS	as	well	as	SocketCAN	and	their	approaches	to	support	CAN	FD.	It	
also	investigates	the	complexity,	use	cases	and	documentation	of	the	five	different	CAN	
drivers.																																																																									1 The word AUTOSAR and the AUTOSAR logo are registered trademarks.

iCC 2017 CAN in Automation

05-15

state as well as transmission and reception
state. In contrast to classic CAN the number
of parameters and the possible parameter
ranges have changed significantly. For
nominal bit-timing as well as four data bit-
timing it is recommended to support eight
parameters in total.

The CiA 603 focuses on AUTOSAR
specification which supports network
synchronization. Hence, there is a
requirement on hardware-based time-
stamping for message reception. The
resolution of the time-stamp shall be in
the range from 1 ns to 1 μs, a time-stamp
register should have a width of 32 bit. This
allows to measure total time spans in the
range from 4,2 seconds (1 ns resolution) to
1,2 hour (1 μs resolution).

With regard to hardware-independent
design of an application it should be possible
to query the supported capabilities of a CAN
hardware. A self-contained event support
for message reception and transmission
as well as CAN state changes allows an
OS-independent driver API. In order to avoid
error-prone bit-shifting operations in CAN
message structures it is recommended to
have functions or macros for configuration
and evaluation of CAN messages.

Apart from these technical topics, there are
some soft facts which have to be taken into
account for comparison. First of all there
should be a detailed user specification, both
explaining the API and giving examples.
Experience in various projects has
shown that it should be available as PDF
document as well as online (HTML) version.
Furthermore, a detailed test specification
ideally in conjunction with ready-to-use test
cases, are of great advantage at the end of
the driver development phase. In addition,
code style and static code checking (e.g.
splint, MISRA-C) enable the development of
robust, compiler-independent code. Last but
not least the API license has to be taken into
account.

All discussed criteria have been listed in
tables 1 and 2, the five APIs have been
evaluated according to these. The code
example for each API depicts the effort

to send a CAN FD standard frame (FBFF
format) using an identifier value of 100 and
a DLC value of 9 (i.e. 12 byte payload).

AUTOSAR

AUTOSAR (AUTomotive Open System
ARchitecture) is a worldwide development
partnership of automotive interested parties
founded in 2003. It pursues the objective
of creating and establishing an open and
standardized software architecture for
automotive electronic control units. The
AUTOSAR development partnership was
formed in July 2003 by BMW, Bosch,
Continental, DaimlerChrysler, Siemens VDO
and Volkswagen [3]. The current version 4.3
is available for AUTOSAR partners, support
for CAN FD was introduced with version
4.2.1.

The AUTORSAR specification for CAN FD [4]
is divided into seven documents and defines
a hardware abstraction layer covering
physical layer, data link layer, transport layer
and requirement specification.

Figure 2: AUTOSAR services for CAN

This leads to a rather complex API with more
than 100 functions. The API defines structures
and function calls, but does not provide
symbol definitions or bit-masks as the other
introduced CAN drivers. Since AUTOSAR is
used in conjunction with a configuration tool,
the software designer is typically not engaged
in this complexity. The API does not support
the self-test or the receive-only mode of the
FSA, also a marker is not provided inside

iCC 2017 CAN in Automation

05-16

the message structure. Due to the static
configuration a capability request function is
not required, the same applies to an API for
CAN message configuration.

The AUTOSAR code is provided by various
vendors as MISRA-C compliant solution
under a commercial license. Figure 3 shows
an example code for transmission of a CAN
FD frame.

void WriteCanFdMessage()
{
 Can_PduType frame;
 uint8_t data[12];
 /* setup data */
 data[0] = 0x12;
 ..
 /* two most significant
 ** bits specify the frame
 ** type
 ** ID = 100, FBFF
 */
 frame.id = 0x40000064;
 frame.length = 12;
 frame.sdu = &data[0];
 Can_Write(&canHardware, &frame);
}

Figure 3: AUTOSAR example code

Can4linux

The can4linux API is an open source CAN
device driver for Linux. The development
started in the mid 1990s for the Philips
82C200 CAN controller stand alone chip on
a ISA Board AT-CAN-MINI. In 1995, the first
version was created to use the CAN bus with
Linux for laboratory automation as a project
of the Linux Lab Project at FU Berlin [5]. The
current version 4.2 is hosted on SourceForge
and available under GPL version 2 license.
The driver uses the deprecated Linux
device interface (/dev/can) for accessing the
kernel driver from user space applications.
The API supports the concept of message
buffers which is rarely documented and
lacks dedicated kernel functions for that
purpose. The majority of the available
CAN drivers support a single FIFO for
message reception and transmission each.
For message transmission this approach
causes the risk of inner priority inversion.
A time-stamp is supported with a resolution
of 1 μs. Since the user space API is rather
simple using 5 common functions (open

/ close / read / write / ioctl) all CAN status
information as well as bit-timing is done
via the ioctl() function. For programming
of the kernel space driver 35 functions are
provided. There is no possibility to configure
all required CAN FD bit-timing parameters
with the actual version of can4linux. The
API lacks functionality for accessing the
message structure, test cases and coding
style guidelines. Figure 4 an shows example
code for transmission of a CAN FD frame.

void WriteCanFdMessage()
{
 int fd;
 canmsg_t frame;
 /* open CAN interface */
 fd = open(„/dev/can0“, O_RDWR);
 frame.flags = MSG_CANFD;
 frame.id = 100;
 frame.length = 12;
 /* setup data */
 frame.data[0] = 0x12;
 ..
 /* count is number of frames */
 write(fd, &frame, 1);
 close(fd);
}
Figure 4: Can4linux example code

CANpie	FD

CANpie FD is an open source project
and pursues the objective of creating and
establishing an open and standardized
software API for access to the CAN bus.
The current version 3.0 is hosted on
Github and available under LGPL version 3
license [8].

Figure 5: CANpie FD services

iCC 2017 CAN in Automation

05-17

The driver uses a C interface for
microcontroller access and a C++ interface
(using Qt 5) for OS independent access to
CAN interface boards.

The API supports the concept of message
buffers with a total limit of 255 buffers. It
is also possible to connect a FIFO to any
available buffer for both transfer directions.
Each buffer supports an acceptance mask
for message reception. The capabilities of
the CAN hardware (CAN FD, number of
buffers, maximum bit-rates, etc.) can be
queried by a function. Also a message time-
stamp is supported with a resolution of 1
ns. The API provides functionality for CAN
message configuration and evaluation. The
CANpie FD code is MISRA-C compliant, the
test specification and test cases are hosted
on Github.

Figure 6 shows an example code for
transmission of a CAN FD frame.

void WriteCanFdMessage()
{
 CpCanMsg_ts frame;
 uint32_t size;
 CpMsgClear(&frame,
 CP_MSG_FORMAT_FBFF);
 CpMsgSetIdentifier(&frame, 100);
 CpMsgSetDlc(&frame, 9);
 /* setup data */
 CpMsgSetData(&frame, 0, 0x12);
 ..
 /* size is number of frames */
 size = 1;
 CpCoreFifoWrite(&canInterface,
 eCP_BUFFER_2,
 &frame, &size);
}
Figure 6: CANpie FD example code

CMSIS

The CMSIS-Driver (Cortex Microcontroller
Software Interface Standard) specification
is a software API that describes peripheral
driver interfaces for middleware stacks and
user applications. The actual version 2.04
is hosted on GitHub and available under
Apache 2.0 license [11].

Due to its close relation to the CMSIS
core functionality the application area is
limited to ARM Cortex microcontrollers.

The API supports the concept of message
buffers and provides FIFO functionality.
The number of supported message buffers
is only limited by hardware. Similar to
CANpie FD the API provides the possibility
to request hardware capabilities. Each
buffer supports an acceptance mask. The
CMSIS driver documentation [10] refers to
a driver validation software, however this is
not publicly available.

 Figure 7: CMSIS driver structure

Although the complete functionality for
CAN FD message handling is available,
the CMSIS driver API does not provide
functionality to configure the data bit-rate.

Figure 8 shows an example code for
transmission of a CAN FD frame.

void WriteCanFdMessage()
{
 uint8_t tx_data[12];
 ARM_CAN_MSG_INFO tx_msg_info;

 /* configure buffer number 1 */
 ptrCAN->ObjectConfigure(1U,
 ARM_CAN_OBJ_TX);

 /* clear message info */
 memset(&tx_msg_info, 0U,
 sizeof(ARM_CAN_MSG_INFO));
 tx_msg_info.id = \
 ARM_CAN_STANDARD_ID(100U);
 tx_msg_info.edl = 1U;
 /* setup data */
 tx_data[0] = 0x12;
 ..
 ptrCAN->MessageSend(tx_obj_idx,
 &tx_msg_info,
 tx_data,
 12U);
}
Figure 8: CMSIS driver example code

iCC 2017 CAN in Automation

05-18

SocketCAN

SocketCAN is a set of open source CAN
drivers and a networking stack contributed
by Volkswagen Research to the Linux kernel
[12]. Since there is no version information in
the SocketCAN header files the application
programmer can only use the Linux kernel
header version to distinguish between different
implementations.

The driver uses the Linux socket interface for
accessing the kernel driver from user space
applications. The API does not support the
concept of message buffers, CAN messages
are transferred opening any number of sockets
to the kernel network driver. For message
transmission this approach causes the risk
of inner priority inversion. A time-stamp is not
supported, also a message marker is missing.
The API uses different structures (and structure
elements) for classic CAN and CAN FD. Both,
user space application and kernel space driver,
distinguish the frame type via the structure size
(MTU). This means it is not possible to write (or
read) more than one frame.

In order to avoid polling it is possible to install
an event handler using the select function in
the application. The bit-rate setting is done
via the Linux ifconfig command, an additional
parameter enables configuration of the data
bit-rate. The bit-rate configuration requires root
access to the operating system, which limits
the field of applications.

Figure 9 shows an example code for
transmission of a CAN FD frame.

void WriteCanFdMessage()
{
 int s;
 int nbytes;
 struct sockaddr_can addr;
 struct canfd_frame frame;
 struct ifreq ifr;

 const char *ifname = „vcan0“;

 if((s = socket(PF_CAN,
 SOCK_RAW,
 CAN_RAW)) < 0)
 {
 perror(„opening failed“);
 returns;
 }
 strcpy(ifr.ifr_name, ifname);
 ioctl(s, SIOCGIFINDEX, &ifr);

 addr.can_family = AF_CAN;
 addr.can_ifindex = \
 ifr.ifr_ifindex;

 printf(„%s at index %d\n“,
 ifname,
 ifr.ifr_ifindex);

 if(bind(s,
 (struct sockaddr *)&addr,
 sizeof(addr)) < 0)
 {
 perror(„bind failed“);
 return;
 }

 frame.can_id = 0x123;
 frame.len = 12;
 /* setup data */
 frame.data[0] = 0x12;

 /* nbytes (MTU) defines classic
 ** frame or CAN FD frame
 */
 nbytes = write(s,
 &frame,
 sizeof(struct can_frame));

 printf(„Wrote %d bytes\n“,
 nbytes);

}

Figure 9: SocketCAN example code

iCC 2017 CAN in Automation

05-19

Table 1: CAN FD API comparison

Table 2: Technical comparison

Summary

Tables 1 and 2 list all criteria and compare
the five selected CAN APIs.

Within the table, the symbol „+“ implies a
feature is fully supported, the symbol „-“
means it is not supported. The symbol „o“
denotes a partial support.

Conclusion

From the point of a software application
engineer the selected CAN API should be
backwards compatible but also allow the
complete access to the world of CAN FD.

This is especially important for the next years,
where classic CAN and CAN FD will exist
side-by-side. Higher layer protocols (HLP),
for example CANopen, will be used in mature
classic CAN applications, new applications
might use CANopen FD. The protocol stack
should support both HLP version (in order
to avoid two firmware versions), hence e.g.
a function to setup a bit-rate should provide
the required parameters during run-time, not
during compile-time. No matter what CAN
API you are currently using, the question is:
„Does it provide a smooth migration path?“

AUTOSAR can4linux CANpie	FD CMSIS Socketcan
Version 4.3 4.2 3.0 2.04 -
Device / OS support Microcontroller Linux Microcontroller,

Win/Linux/Mac
ARM based

microcontroller
Linux

License Commercial GPL version 2 LGPL version 3 Apache 2.0 GPL version 2
User documentation PDF HTML PDF / HTML HTML Text file
Test documentation PDF - PDF / HTML o -
Test cases + - + o -
Test code + - + o o
Code compliance MISRA-C - MISRA-C CMSIS -
API function count 101 5 (35) 21 17 6

AUTOSAR can4linux CANpie	FD CMSIS Socketcan
FSA: general + + + + +
FSA: self test - + + + -
FSA: receive-only - + + + +
FSA: low-power + - + - -
Message buffer + + + (255 max.) + -
Acceptance filtering o +(1) + (255 max.) + + (SW)
Message marker - - + o -
Transmit sequence FIFO / buffer FIFO FIFO / buffer FIFO / buffer FIFO
Capability request - - + + -
Event support + - + + o
CAN status + o + + +
CAN message API - - + - -
CAN message FDF + + + + +
CAN message BRS + - + + +
CAN message ESI + + + + +
CAN time-stamp o 1 µs 1 ns .. 1 µs - -

iCC 2017 CAN in Automation

05-20

References
[1] [1] CiA 601, Part 2: CAN controller interface

recommendation, CAN in Automation e.V.
[2] CiA 603, CAN Frame time-stamping, CAN in

Automation e.V.
[3] https://en.wikipedia.org/wiki/AUTOSAR
[4] AUTOSAR Specification of CAN Driver,

Version 4.3.0, www.autosar.org
[5] https://en.wikipedia.org/wiki/Can4linux
[6] https://sourceforge.net/projects/can4linux/
[7] http://www.can-wiki.info/can4linux/man/index.

html
[8] https://en.wikipedia.org/wiki/CANpie
[9] https://github.com/canpie/
[10] http://www.keil.com/pack/doc/CMSIS/Driver/

html/index.html
[11] https://github.com/ARM-software/CMSIS_5
[12] https://en.wikipedia.org/wiki/SocketCAN
[13] https://www.kernel.org/doc/Documentation/

networking/can.txt
[14] Patent DE 10 2004 020 880 A1, Schnittstelle

zur Kommunikation zwischen Fahrzeug-
Applikationen und Fahrzeug-Bussystemen

Uwe Koppe
MicroControl GmbH & Co. KG
Junkersring 23
DE-53844 Troisdorf
koppe@microcontrol.net
www.microcontrol.net

Johann Tiderko
MicroControl GmbH & Co. KG
Junkersring 23
DE-53844 Troisdorf
johann.tiderko@microcontrol.net
www.microcontrol.net

