
iCC 2017 CAN in Automation

03-11

Gateway	processor	evolution	in	automotive	
networks

Roland Lieder, Renesas Electronics Europe GmbH

In	the	early	days	of	car	electronics	…

…there were single wires, used as
control lines between switches and the
actuators, like lights and wipers. In today’s
cars, the amount of comfort, safety, and
security functions has generated the need
for network communication. Dedicated
automotive interfaces like LIN, CAN and
FlexRay have been invented to serve as
media for digitized communication. Ethernet
has been introduced to provide even higher
data rates.

In the (simplified!) architecture of a today’s
car, all these data flows are connected in a
“Central Gateway”.

 Figure 1: Car network architecture today

With increased functionality, the bus load in-
creases and more bus systems with higher
bit rates are added, so that the central gate-
way architecture simply comes up against
its limits. At this point, a new architecture is
under consideration, where the central gate-
way function is split into domains. These do-
mains then are connected with each other
by an Ethernet backbone.

Figure 2: New car network architecture

The Ethernet backbone is formed by an
Ethernet switch, which in fact maintains
point-to-point connections to the domain
gateways. The advantage of this architec-
ture is that the gateway processing is split,
and at the same time, the domain gateway
can perform additional tasks for its local
domain.

Due	 to	 the	upcoming	 requirements	of	multimedia	applications	and	driver	assistance	
systems,	the	volume	of	communication	data	in	a	car	is	continuously	increasing.	Current	
network	 architectures	will	 soon	 require	 new	 topologies	 in	 order	 to	 cope	with	 those	
requirements	and	to	ensure	data	security.	
Consequently,	 gateways	 within	 new	 topologies	 will	 change	 as	 well.	 This	 in	 turn	
impacts	the	functional	requirements	of	the	key	component	of	a	gateway,	the	gateway	
microcontroller	and	its	internal	system	architecture.	New	gateway	IPs	with	dramatically	
improved	functionality	are	required.	
CAN	and	Ethernet	will	come	closer,	and	a	gateway	will	have	to	handle	both.	Bridging	
CAN	networks	via	a	backbone	Ethernet	will	also	be	covered.
This	paper	presents	a	view	on	a	future	gateway	controller	hardware	architecture	and	its	
routing	capabilities.	The	concept	is	compared	against	alternative	approaches.	
Interaction	between	a	new	kind	of	gateway	IP	and	the	associated	host	software	provides	
a	way	to	handle	both	CAN	signal	and	CAN	frame	routing	challenges.
A	preliminary	insight	into	the	hardware	functionality	completes	this	contribution.

iCC 2017 CAN in Automation

03-12

Ethernet	in	the	car?

Initially, there were many obstacles, mostly on
the physical level of Ethernet. This network
type was viewed with disfavour, because the
qualification of Ethernet transceivers did not
fulfil automotive standards, and the existing
media (cable tree) in the car was not able to
serve Ethernet requirements. However, since
the invention of “single-twisted-pair” Ethernet,
and since there is more than one supplier
for Ethernet transceivers of this media, a
breakthrough was achieved. And for the
qualification – this process is ongoing, and the
automotive requirements can be fulfilled.

Challenges	of	a	gateway	processor

From the perspective of a semiconductor
manufacturer, a new series of gateway
processors and its gateway IP must fit with this
new architecture. The gateway may now have
various levels of complexity, depending on its
position within the network architecture. It can
simply be an Ethernet switch, but also a unit
with several kinds of different bus systems.
There are many more requirements that arise
from the new architecture or are immediate
consequences of it.

The new requirements can be grouped into
four categories:

1. Flexibility & integration
 The gateway must have hardware routing/

switching support. Several bus protocols
and adaptable bus interfaces are required.
Without hardware support, the gateway
processor would not be able to provide
reliable latency, if it is required to handle
local domain tasks in addition. The hardware
feature set needs to be scalable in order
to fit a device family, which can be applied
to different positions within the system
architecture. Security. aspects must be
considered in hardware and software. This is
an implicit demand of the system complexity.

2. Domain support
 On the domain level, tunnelling of data

streams (like CAN over Ethernet), trans-
port protocols (TP for software down-
loading) and information mirroring (for
diagnosis) are required.

3. Latency
 Even though the architecture is new, there

are still requirements that certain signals
from a sensor must reach an actuator at
a different location within the architecture
within a reliable time. This concerns the to-
tal delay time, but also the variation (jitter)
of the delay. For certain signals, there are
fixed conditions on this, so that hardware
support of priority (Time Sensitive Networ-
king, TSN [4]) and Quality of Service (QoS,
[5]) are mandatory.

4. Global time support
 The whole system should work as a com-

mon unit. This is what the “user”, who is the
car driver, is expecting. In order to perform
in this way, every unit in the system must
be aware of a common (global) time or
master clock. For Ethernet, the IEEE 1588
(PTP) [1] and 802.1AS [3] standards must
be supported to allow the time synchroni-
zation of all nodes. A gateway processor
must be able to perform as a time master,
but also accept another time master.

Increasing network traffic at higher data rates
in conjunction with the requirements menti-
oned above mean that the legacy architecture
of a gateway processor needs to be updated.
We could also talk about an alignment of the
existing architecture with the new challenges.
The classical architecture of a microprocessor
may look like this:

Figure 3: Legacy µC Architecture

Obviously, even though a peripheral bus
system would probably be able to transfer
all data of a network architecture as shown
in Figure 2, the CPU system would be heavily
loaded with that. Such a system tends to be
unable to keep latency conditions and has,
if improved with higher clock speed, much
higher power consumption. At this point, a
new architecture must be found, together

iCC 2017 CAN in Automation

03-13

with new features of the communication
peripherals.

The	next	generation	architecture	...

…of gateway processors was invented with its
starting point at the communication interfaces.
For most of the traffic, where whole data
frames are kept as they are (so called “frame
routing”), the communication interfaces were
enabled to process them on their own, without
any support from the CPU and a long way
through its software stack. To keep the system
flexible, the peripherals were not purged into
a huge monolithic gateway block, but are now
integrated into a gateway subsystem, with its
local bus, its routing engine and its local data
RAM. For CPU interaction when doing “signal
routing”, a dedicated interface is provided.
This interface and all peripherals are now
called “agents”.

Figure 4: New gateway µC architecture

All components shown in red are part of a new
“gateway IP”, which is scalable and consists
of the peripheral agents, a routing engine,
a dedicated, wide bus system and some
attached data RAM. The classical peripheral
bus system will stay; this allows the legacy
usage of a peripheral, if it is deallocated from
the routing engine of the gateway IP. A dual
CPU core system is recommended for higher
performance gateway solutions, especially
if security functionality or extensive signal
routing is required. The CPU cores work with
data in the global RAM area when dealing with
gateway routing. A DMA system with interrupt
support is installed in the CPU agent, which
will provide the frame and signal data from
and to queues in the global RAM.
This architecture (with some restrictions) has
already been created by Renesas within a
prototype, in order to verify the gateway IP
concept and its usability for future gateway

projects in car networks.

Use	cases	of	the	gateway	IP

As already mentioned, the gateway IP is
scalable. It consists of sub-blocks, which can
be added depending on its usage within the
various gateway processor products.

For example, when looking at the car network
architecture in figure 2, a gateway processor
product could be used in the position of
the central router/switch, which forms the
backbone of the network. For this use case,
the implemented gateway IP would look like
this:

Figure 5: Gateway IP switch configuration

In this figure, CPU agent, routing engine, data
RAM and communication bus were grouped
in the red block to simplify the illustration.
For the switch configuration, only Ethernet
peripherals are added. One of them, which
could be the interface to a diagnosis port,
could be enhanced by a MACSEC function
[3], which enables security on Ethernet MAC
level.

If we are looking at the domain level, a gateway
node could look like this:

Figure 6: Gateway IP CAN domain configuration
In this type of configuration, the routing

iCC 2017 CAN in Automation

03-14

engine would transfer CAN frames by using
a tunnelling protocol through the Ethernet.
For best performance, the CAN and Ethernet
agents involved move the frames from and
to memory by using the IEEE 1722a format
[2].

Figure 7: IEEE 1722a mapping

Using this format, several CAN frames can
be joined into one Ethernet frame. As an
IEEE 1722a Ethernet frame has a stream
ID and a VLAN [7] tag, this kind of grouping
is already part of the routing and affects
the performance of the overall system.
Therefore, a system architect must decide
which CAN frames should go into which
Ethernet stream or VLAN.

The	ethernet	backbone	network

Ethernet streams and virtual LANs are
identified by the stream ID and the VLAN
tag. These are part of the Ethernet header.
Whenever Ethernet frames are routed
through switches, priority rules can be
applied. Determined by these rules, the
quality of the backbone will be seen by its
latency and event jitter.
In automotive applications, these real-time
conditions must be kept under control. Most
use cases require well-defined reaction
times and reliable overall system behaviour.
This is why an Ethernet switch or router in
the automotive system must support Time
Sensitive Networking (TSN) and have
awareness of its Quality of Service (QoS).
The Renesas Gateway IP, which can form
a TSN switch, supports three methods to
achieve TSN and QoS requirements:

1. Audio/Video Bridging (AVB) [6]
 When using the AVB method,

transmission queues of streams with
dedicated IDs (see “Stream ID” above)
are assigned for predefined traffic
classes (A, B or C). Queues (“Qn”)
with pending traffic in higher prioritized

queues are serviced first. As a result, if
a dedicated stream has been assigned
to the highest priority, only the currently
pending (active) transmission is delaying
the stream. The worst case delay or jitter
of an event can be the maximum length
of an Ethernet message.

2. Time Aware Shaping (TAS) [8]
 In this mode, transmission time-slots

“Sn” are assigned for predefined traffic
classes (A, B or C). This method can
be compared with TT-CAN. High jittering
may occur if the transferred events
are not synchronous with the time
slots to which they have been
assigned. However, if the overall system
has the same synchronization (clock)
as TAS, then this method will achieve
good results. If not synchronous, the
worst case delay or jitter of an event
is the period of its assigned time
slot.

3. AVB with Preemption [9]
 The preemption technique interrupts and

splits currently transmitted frames when
a high priority queue needs to transmit
an event. In order to handle this, both
transmitter and receivers must be able
to support preemption. Apart from a
minimum frame length before interruption
is possible, an event can be sent almost
immediately, if it has highest priority.
This reduces the delay and jitter of this
method to a minimum.

Figure 8: TSN methods on Ethernet

Hardware	and	software	interaction

While pure hardware frame routing
performance may be obvious, the interaction
with software and the signal routing should
be looked at in detail.
Signal routing is a kind of processing

iCC 2017 CAN in Automation

03-15

gateway routing, where new frames need to
be created from data derived from divergent
sources. Such sources can be different
frames from other nodes or ports, or internal
gateway data, or data from an application
running on the gateway’s CPU. Whenever
such routing is required, an efficient interface
between the hardware and software of the
gateway is also required.
The gateway IP in its final version will have a
DMA controller, which acts as a bus master
on the global RAM access, similarly to the
CPU itself.
The data frames in the global RAM are
organized in queues, so that prioritized
processing is possible. Each frame
with payload has an associated “descriptor”,
which contains all the information
required for the routing process of the
hardware.

Let’s zoom into the hardware architecture at
the border between the CPU agent of the
gateway IP and the global RAM. This is an
example configuration.

Figure 9: CPU agent interconnection

Within the global RAM, the CPU prepares
the frames to be transmitted by writing into
the predefined queue areas. As soon as all
data is ready for the frame to be transmitted
(routed signals are all inserted consistently),
then the CPU triggers a transmit request via
the peripheral bus to the CPU agent of the
gateway IP. This is the only action that needs
to be taken by the CPU. All the following is
performed by the CPU agent of the gateway
IP and the routing engine in it.

Once triggered, the CPU agent will copy the
associated descriptor of the frame by DMA
into the data RAM of the gateway IP. After
having analyzed the descriptor (i.e. knowing
the size of the frame), the CPU agent will

then fetch the payload from the global RAM
into the data RAM (again by DMA).

The queue status gets updated accordingly,
and the further processing is handed over to
the routing engine.

This engine is cyclically checking all
configured routing sources for any updated
descriptors, and then triggers the associated
peripheral interfaces to handle the frames.
In our case, if we want to send by Ethernet
for example, the routing engine would
trigger the specified Ethernet agent to fetch
the frame at the specified position from the
data RAM and transfer it to the Ethernet
MAC. In this way, the frame gets sent out.

Similarly, a CAN agent could do the same
with the frame if it was addressed. The CAN
agent in addition would unpack the CAN
frame(s) from the IEEE payload, before
sending it by its internal transfer layer.

In the opposite direction, the reception of
signals begins in the peripheral agent of the
gateway IP. This agent will copy the frame
data into the data RAM via the internal
bus system of the gateway IP. Next, it will
create a descriptor for the frame. As soon
this descriptor is recognized by the routing
engine, the engine will initiate the further
processing. In an example case, the frame
will be moved into a local data buffer, where
it can be fetched by the CPU agent. As soon
as the CPU agent has copied the frame
data and the descriptor to the global RAM
of the CPU, it will raise an interrupt. From
this point, the CPU will take over the further
handling and signal routing by software.

In summary, we can see that even for typical
software processing tasks, the gateway
IP hardware takes care of all peripheral
processing. The CPU only accesses its
global RAM. In this way, the speed of
the processing of signal routing can be
significantly increased.

Looking	into	an	example	system

The functionality of an Ethernet backbone
based gateway concept can be explained
by means of a simple example.

iCC 2017 CAN in Automation

03-16

Figure 10: Example Ethernet GW System

Let’s assume we have a system with three
gateways, GW1 to GW3, which are inter-
connected by a backbone Ethernet (ETH0).
This TSN based Ethernet may carry several
AVB streams.

If we are looking at one source only, CAN-
A, CAN frames on this bus will be routed to
certain destinations, shown here as CAN-
B, C, D, E, F and G. The intention is not to
broadcast all frames to every bus and stati-
on, because this would have two major disa-
dvantages. First, selective filtering would be
required in every station; and second, the
backbone Ethernet would be crowded unne-
cessarily with traffic.

Therefore, the system architect may have
given the following routing rules for CAN-A:

Source CAN-A Ú Destinations

CAN-ID 100H…110H Ú CAN-C, E
CAN-ID 200H…2FFH Ú CAN-G
CAN-ID 153H, 1017H Ú CAN-D, E, F, G
CAN-ID 100H…1FFH Ú CAN-B

Along with the groups of destinations, we
can set up three AVB streams with their
corresponding VLAN tags and stream IDs:

Stream #1: CAN-A Ú CAN-C, E
Stream #2: CAN-A Ú CAN-G
Stream #3: CAN-A Ú CAN-D, E, F, G

The routing from CAN-A to CAN-B is a local
route within the gateway GW1 and therefore
does not require an AVB stream.
Gateway GW1 emits all three streams that
comprise the corresponding CAN frames
with the given IDs. Gateway GW2 will
selectively receive the streams #1 and #3,

so that it can forward the CAN messages
with the corresponding IDs to its CAN buses
C, D and E. Gateway GW3 will selectively
receive the streams #2 and #3, so that it can
forward the messages to its local CAN bus
systems F and G, accordingly.

The principle behind this strategy is that
AVB streams and associated VLANs are
used to bundle data streams with the same
directions. In addition, bundling is also
based on priority or timing constraints. This
is where the TSN based Ethernet switches
will have their biggest advance. Each
gateway that includes a TSN based switch
can be configured accordingly, so that best
performance can be achieved.

As a conclusion, Ethernet in automotive
applications will have a good chance to
conquer the market if the features based
on TSN are implemented and effective
processing in hardware supports them.
Frame routing can be performed entirely
by hardware, while signal and PDU based
routing would require software interaction.
At this point, the interface between software
and hardware must become efficient, so
that the gateway systems stay predictable
regarding their real-time constraints.

References
[1] [1] NIST IEEE1588: http://www.nist.gov
[2] IEEE 1722a: http://www.ieee.org
[3] IEEE 802.1AE, AS: http://www.ieee.org
[4] IEEE 802.1 TSN Task Group (link see [3])
[5] IETF RFC 7567, 2212: http://www.ietf.org
[6] IEEE 802.1 http://www.ieee802.org
[7] IEEE 801.1Q (link see [3])
[8] W. Steiner, “TTEthernet Specification,” TTTech
 Computertechnik AG, http://www.tttech.com
[9] IEEE 802.1Qbu: http://www.ieee.org

Roland Lieder
Renesas Electronics Europe GmbH
Arcadiastr. 10
DE-40472 Düsseldorf
Tel.: +49-211-6503-0
roland.lieder@renesas.com
www.renesas.com

