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In	the	early	days	of	car	electronics	…

…there were single wires, used as 
control lines between switches and the 
actuators, like lights and wipers. In today’s 
cars, the amount of comfort, safety, and 
security functions has generated the need  
for network communication. Dedicated 
automotive interfaces like LIN, CAN and 
FlexRay have been invented to serve as 
media for digitized communication. Ethernet 
has been introduced to provide even higher 
data rates.

In the (simplified!) architecture of a today’s 
car, all these data flows are connected in a 
“Central Gateway”. 

 Figure 1: Car network architecture today

With increased functionality, the bus load in-
creases and more bus systems with higher 
bit rates are added, so that the central gate-
way architecture simply comes up against 
its limits. At this point, a new architecture is 
under consideration, where the central gate-
way function is split into domains. These do-
mains then are connected with each other 
by an Ethernet backbone.

 
Figure 2: New car network architecture

The Ethernet backbone is formed by an 
Ethernet switch, which in fact maintains 
point-to-point connections to the domain 
gateways. The advantage of this architec-
ture is that the gateway processing is split, 
and at the same time, the domain gateway 
can perform additional tasks for its local  
domain.

Due	 to	 the	upcoming	 requirements	of	multimedia	applications	and	driver	assistance	
systems,	the	volume	of	communication	data	in	a	car	is	continuously	increasing.	Current	
network	 architectures	will	 soon	 require	 new	 topologies	 in	 order	 to	 cope	with	 those	
requirements	and	to	ensure	data	security.	
Consequently,	 gateways	 within	 new	 topologies	 will	 change	 as	 well.	 This	 in	 turn	
impacts	the	functional	requirements	of	the	key	component	of	a	gateway,	the	gateway	
microcontroller	and	its	internal	system	architecture.	New	gateway	IPs	with	dramatically	
improved	functionality	are	required.	
CAN	and	Ethernet	will	come	closer,	and	a	gateway	will	have	to	handle	both.	Bridging	
CAN	networks	via	a	backbone	Ethernet	will	also	be	covered.
This	paper	presents	a	view	on	a	future	gateway	controller	hardware	architecture	and	its	
routing	capabilities.	The	concept	is	compared	against	alternative	approaches.	
Interaction	between	a	new	kind	of	gateway	IP	and	the	associated	host	software	provides	
a	way	to	handle	both	CAN	signal	and	CAN	frame	routing	challenges.
A	preliminary	insight	into	the	hardware	functionality	completes	this	contribution.
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Ethernet	in	the	car?

Initially, there were many obstacles, mostly on 
the physical level of Ethernet. This network 
type was viewed with disfavour, because the 
qualification of Ethernet transceivers did not 
fulfil automotive standards, and the existing 
media (cable tree) in the car was not able to 
serve Ethernet requirements. However, since 
the invention of “single-twisted-pair” Ethernet, 
and since there is more than one supplier 
for Ethernet transceivers of this media, a 
breakthrough was achieved. And for the 
qualification – this process is ongoing, and the 
automotive requirements can be fulfilled.

Challenges	of	a	gateway	processor

From the perspective of a semiconductor 
manufacturer, a new series of gateway 
processors and its gateway IP must fit with this 
new architecture. The gateway may now have 
various levels of complexity, depending on its 
position within the network architecture. It can 
simply be an Ethernet switch, but also a unit 
with several kinds of different bus systems. 
There are many more requirements that arise 
from the new architecture or are immediate 
consequences of it.

The new requirements can be grouped into 
four categories:

1. Flexibility & integration
 The gateway must have hardware routing/ 

switching support. Several bus protocols 
and adaptable bus interfaces are required.  
Without hardware support, the gateway 
processor would not be able to provide 
reliable latency, if it is required to handle  
local domain tasks in addition. The hardware  
feature set needs to be scalable in order  
to fit a device family, which can be applied  
to different positions within the system  
architecture. Security. aspects must be  
considered in hardware and software. This is 
an implicit demand of the system complexity.

2. Domain support
 On the domain level, tunnelling of data 

streams (like CAN over Ethernet), trans-
port protocols (TP for software down- 
loading) and information mirroring (for  
diagnosis) are required.

3. Latency
 Even though the architecture is new, there 

are still requirements that certain signals 
from a sensor must reach an actuator at 
a different location within the architecture 
within a reliable time. This concerns the to-
tal delay time, but also the variation (jitter) 
of the delay. For certain signals, there are 
fixed conditions on this, so that hardware 
support of priority (Time Sensitive Networ-
king, TSN [4]) and Quality of Service (QoS, 
[5]) are mandatory.

4. Global time support
 The whole system should work as a com-

mon unit. This is what the “user”, who is the 
car driver, is expecting. In order to perform 
in this way, every unit in the system must 
be aware of a common (global) time or 
master clock. For Ethernet, the IEEE 1588 
(PTP) [1] and 802.1AS [3] standards must 
be supported to allow the time synchroni-
zation of all nodes. A gateway processor 
must be able to perform as a time master, 
but also accept another time master.

Increasing network traffic at higher data rates 
in conjunction with the requirements menti-
oned above mean that the legacy architecture 
of a gateway processor needs to be updated. 
We could also talk about an alignment of the 
existing architecture with the new challenges. 
The classical architecture of a microprocessor 
may look like this:

 
Figure 3: Legacy µC Architecture

Obviously, even though a peripheral bus 
system would probably be able to transfer 
all data of a network architecture as shown 
in Figure 2, the CPU system would be heavily 
loaded with that. Such a system tends to be 
unable to keep latency conditions and has, 
if improved with higher clock speed, much 
higher power consumption. At this point, a 
new architecture must be found, together 
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with new features of the communication 
peripherals.

The	next	generation	architecture	...

…of gateway processors was invented with its 
starting point at the communication interfaces. 
For most of the traffic, where whole data 
frames are kept as they are (so called “frame 
routing”), the communication interfaces were 
enabled to process them on their own, without 
any support from the CPU and a long way 
through its software stack. To keep the system 
flexible, the peripherals were not purged into 
a huge monolithic gateway block, but are now 
integrated into a gateway subsystem, with its 
local bus, its routing engine and its local data 
RAM. For CPU interaction when doing “signal 
routing”, a dedicated interface is provided. 
This interface and all peripherals are now 
called “agents”.

 
Figure 4: New gateway µC architecture

All components shown in red are part of a new 
“gateway IP”, which is scalable and consists 
of the peripheral agents, a routing engine, 
a dedicated, wide bus system and some 
attached data RAM. The classical peripheral 
bus system will stay; this allows the legacy 
usage of a peripheral, if it is deallocated from 
the routing engine of the gateway IP. A dual 
CPU core system is recommended for higher 
performance gateway solutions, especially 
if security functionality or extensive signal 
routing is required. The CPU cores work with 
data in the global RAM area when dealing with 
gateway routing. A DMA system with interrupt 
support is installed in the CPU agent, which 
will provide the frame and signal data from 
and to queues in the global RAM.
This architecture (with some restrictions) has 
already been created by Renesas within a 
prototype, in order to verify the gateway IP 
concept and its usability for future gateway 

projects in car networks.

Use	cases	of	the	gateway	IP

As already mentioned, the gateway IP is 
scalable. It consists of sub-blocks, which can 
be added depending on its usage within the 
various gateway processor products.

For example, when looking at the car network 
architecture in figure 2, a gateway processor 
product could be used in the position of 
the central router/switch, which forms the 
backbone of the network. For this use case, 
the implemented gateway IP would look like 
this:

Figure 5: Gateway IP switch configuration

In this figure, CPU agent, routing engine, data 
RAM and communication bus were grouped 
in the red block to simplify the illustration. 
For the switch configuration, only Ethernet 
peripherals are added. One of them, which 
could be the interface to a diagnosis port, 
could be enhanced by a MACSEC function 
[3], which enables security on Ethernet MAC 
level.

If we are looking at the domain level, a gateway 
node could look like this:

 

Figure 6: Gateway IP CAN domain configuration
In this type of configuration, the routing 
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engine would transfer CAN frames by using 
a tunnelling protocol through the Ethernet. 
For best performance, the CAN and Ethernet 
agents involved move the frames from and 
to memory by using the IEEE 1722a format 
[2].

 
Figure 7: IEEE 1722a mapping

Using this format, several CAN frames can 
be joined into one Ethernet frame. As an 
IEEE 1722a Ethernet frame has a stream  
ID and a VLAN [7] tag, this kind of grouping 
is already part of the routing and affects 
the performance of the overall system. 
Therefore, a system architect must decide 
which CAN frames should go into which 
Ethernet stream or VLAN.

The	ethernet	backbone	network

Ethernet streams and virtual LANs are 
identified by the stream ID and the VLAN 
tag. These are part of the Ethernet header. 
Whenever Ethernet frames are routed 
through switches, priority rules can be 
applied. Determined by these rules, the 
quality of the backbone will be seen by its 
latency and event jitter.
In automotive applications, these real-time 
conditions must be kept under control. Most 
use cases require well-defined reaction 
times and reliable overall system behaviour. 
This is why an Ethernet switch or router in 
the automotive system must support Time 
Sensitive Networking (TSN) and have 
awareness of its Quality of Service (QoS). 
The Renesas Gateway IP, which can form 
a TSN switch, supports three methods to 
achieve TSN and QoS requirements:

1. Audio/Video Bridging (AVB) [6]
 When using the AVB method, 

transmission queues of streams with 
dedicated IDs (see “Stream ID” above) 
are assigned for predefined traffic 
classes (A, B or C). Queues (“Qn”) 
with pending traffic in higher prioritized 

queues are serviced first. As a result, if 
a dedicated stream has been assigned 
to the highest priority, only the currently 
pending (active) transmission is delaying 
the stream. The worst case delay or jitter 
of an event can be the maximum length 
of an Ethernet message.

2. Time Aware Shaping (TAS) [8]
 In this mode, transmission time-slots 

“Sn” are assigned for predefined traffic 
classes (A, B or C). This method can  
be compared with TT-CAN. High jittering 
may occur if the transferred events  
are not synchronous with the time  
slots to which they have been  
assigned. However, if the overall system 
has the same synchronization (clock) 
as TAS, then this method will achieve  
good results. If not synchronous, the 
worst case delay or jitter of an event  
is the period of its assigned time  
slot.

3. AVB with Preemption [9]
 The preemption technique interrupts and 

splits currently transmitted frames when 
a high priority queue needs to transmit 
an event. In order to handle this, both 
transmitter and receivers must be able 
to support preemption. Apart from a 
minimum frame length before interruption 
is possible, an event can be sent almost 
immediately, if it has highest priority. 
This reduces the delay and jitter of this 
method to a minimum.

 
Figure 8: TSN methods on Ethernet

Hardware	and	software	interaction

While pure hardware frame routing 
performance may be obvious, the interaction 
with software and the signal routing should 
be looked at in detail.
Signal routing is a kind of processing 
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gateway routing, where new frames need to 
be created from data derived from divergent 
sources. Such sources can be different 
frames from other nodes or ports, or internal 
gateway data, or data from an application 
running on the gateway’s CPU. Whenever 
such routing is required, an efficient interface 
between the hardware and software of the 
gateway is also required.
The gateway IP in its final version will have a 
DMA controller, which acts as a bus master 
on the global RAM access, similarly to the 
CPU itself.
The data frames in the global RAM are 
organized in queues, so that prioritized 
processing is possible. Each frame  
with payload has an associated “descriptor”, 
which contains all the information  
required for the routing process of the 
hardware.

Let’s zoom into the hardware architecture at 
the border between the CPU agent of the 
gateway IP and the global RAM. This is an 
example configuration.

 
Figure 9: CPU agent interconnection

Within the global RAM, the CPU prepares 
the frames to be transmitted by writing into 
the predefined queue areas. As soon as all 
data is ready for the frame to be transmitted 
(routed signals are all inserted consistently), 
then the CPU triggers a transmit request via 
the peripheral bus to the CPU agent of the 
gateway IP. This is the only action that needs 
to be taken by the CPU. All the following is 
performed by the CPU agent of the gateway 
IP and the routing engine in it.

Once triggered, the CPU agent will copy the 
associated descriptor of the frame by DMA 
into the data RAM of the gateway IP. After 
having analyzed the descriptor (i.e. knowing 
the size of the frame), the CPU agent will 

then fetch the payload from the global RAM 
into the data RAM (again by DMA).

The queue status gets updated accordingly, 
and the further processing is handed over to 
the routing engine.

This engine is cyclically checking all 
configured routing sources for any updated 
descriptors, and then triggers the associated 
peripheral interfaces to handle the frames. 
In our case, if we want to send by Ethernet 
for example, the routing engine would 
trigger the specified Ethernet agent to fetch 
the frame at the specified position from the 
data RAM and transfer it to the Ethernet 
MAC. In this way, the frame gets sent out.

Similarly, a CAN agent could do the same 
with the frame if it was addressed. The CAN 
agent in addition would unpack the CAN 
frame(s) from the IEEE payload, before 
sending it by its internal transfer layer.

In the opposite direction, the reception of 
signals begins in the peripheral agent of the 
gateway IP. This agent will copy the frame 
data into the data RAM via the internal 
bus system of the gateway IP. Next, it will 
create a descriptor for the frame. As soon 
this descriptor is recognized by the routing 
engine, the engine will initiate the further 
processing. In an example case, the frame 
will be moved into a local data buffer, where 
it can be fetched by the CPU agent. As soon 
as the CPU agent has copied the frame 
data and the descriptor to the global RAM 
of the CPU, it will raise an interrupt. From 
this point, the CPU will take over the further 
handling and signal routing by software.

In summary, we can see that even for typical 
software processing tasks, the gateway 
IP hardware takes care of all peripheral 
processing. The CPU only accesses its 
global RAM. In this way, the speed of 
the processing of signal routing can be 
significantly increased.

Looking	into	an	example	system

The functionality of an Ethernet backbone 
based gateway concept can be explained 
by means of a simple example.



iCC 2017 CAN in Automation

03-16

 

Figure 10: Example Ethernet GW System

Let’s assume we have a system with three 
gateways, GW1 to GW3, which are inter-
connected by a backbone Ethernet (ETH0). 
This TSN based Ethernet may carry several 
AVB streams.

If we are looking at one source only, CAN-
A, CAN frames on this bus will be routed to 
certain destinations, shown here as CAN-
B, C, D, E, F and G. The intention is not to 
broadcast all frames to every bus and stati-
on, because this would have two major disa-
dvantages. First, selective filtering would be 
required in every station; and second, the 
backbone Ethernet would be crowded unne-
cessarily with traffic.

Therefore, the system architect may have 
given the following routing rules for CAN-A:

Source CAN-A Ú Destinations

CAN-ID 100H…110H Ú CAN-C, E
CAN-ID 200H…2FFH Ú CAN-G
CAN-ID 153H, 1017H Ú CAN-D, E, F, G
CAN-ID 100H…1FFH Ú CAN-B

Along with the groups of destinations, we 
can set up three AVB streams with their  
corresponding VLAN tags and stream IDs:

Stream #1: CAN-A Ú CAN-C, E
Stream #2: CAN-A Ú CAN-G
Stream #3: CAN-A Ú CAN-D, E, F, G

The routing from CAN-A to CAN-B is a local 
route within the gateway GW1 and therefore 
does not require an AVB stream. 
Gateway GW1 emits all three streams that 
comprise the corresponding CAN frames 
with the given IDs. Gateway GW2 will  
selectively receive the streams #1 and #3, 

so that it can forward the CAN messages 
with the corresponding IDs to its CAN buses 
C, D and E. Gateway GW3 will selectively 
receive the streams #2 and #3, so that it can 
forward the messages to its local CAN bus 
systems F and G, accordingly.

The principle behind this strategy is that 
AVB streams and associated VLANs are 
used to bundle data streams with the same 
directions. In addition, bundling is also 
based on priority or timing constraints. This 
is where the TSN based Ethernet switches 
will have their biggest advance. Each 
gateway that includes a TSN based switch 
can be configured accordingly, so that best 
performance can be achieved.

As a conclusion, Ethernet in automotive 
applications will have a good chance to 
conquer the market if the features based 
on TSN are implemented and effective 
processing in hardware supports them. 
Frame routing can be performed entirely 
by hardware, while signal and PDU based 
routing would require software interaction. 
At this point, the interface between software 
and hardware must become efficient, so 
that the gateway systems stay predictable 
regarding their real-time constraints.
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