
iCC 2017 CAN in Automation

08-5

Scalable	CAN	security	for	
CAN,	CANopen	and	other	protocols

Olaf Pfeiffer, Embedded Systems Academy GmbH
Christian Keydel, Embedded Systems Academy GmbH

This paper summarizes the technical
methods and features that are used in the
CANcrypt security system introduced in the
book “Implementing scalable CAN security
with CANcrypt” [1].

Limits	of	CAN	specific	security

When looking at security for existing
CAN based communication then some
cases can be excluded from further analysis.
These are the cases that either we cannot
protect a system from or cases for which
there are already a number of solutions
available.

If an intruder has access to a CAN system
at a level where they can inject any CAN
message at any rate, it allows them to run a
denial of service style attack by flooding the
CAN bus with high priority messages. It then
becomes unusable for other participants
which has a similar effect as physically
cutting the CAN signal lines. In other words,
once the door is open to an intruder, a
complete shutdown of the system cannot
be prevented. However, typically an intruder
would not want to break a system but instead

extract or manipulate status or control
information. Safeguarding the integrity of a
system against this type of attack therefore
has a higher priority.

For larger blocks of data there are common
end-to-end security and encryption standards
used on the Internet such as SSL. They
can be applied to CAN communications,
too, but only in combination with a
peer-to-peer transport protocol on top of CAN
such as CANopen segmented SDO transfer
where larger blocks of data are split into
small segments that fit into single CAN
messages.

One challenge securing “generic” CAN
communications is to develop a security
mechanism that can be applied to a single
message which includes for example sensor
data of just a few bytes, or even single-bit
commands that each control an individual
switch like unlocking a door, and that also
includes those messages that make use
of the broadcast feature of CAN by having
multiple receivers (one-to-many). Common
Internet security protocols are not suitable
for these scenarios.

Commonly	used	security	methods	for	authentication	and	encryption/decryption	on	the	
Internet	cannot	easily	be	applied	to	CAN/CANopen.	The	CANcrypt	framework	described	
in	the	book	“Implementing	scalable	CAN	security	with	CANcrypt”[1]	adds	different	levels	
of	security	features	to	CAN.	The	CANcrypt	system	is	protocol	independent	and	can	be	
used	with	CANopen	or	other	higher-layer	CAN	protocols.	A	manager	/	configurator	is	
only	required	for	the	generation	and	exchange	of	keys,	but	not	during	regular	operation.
For	key	generation,	CANcrypt	uses	a	CAN	feature	that	allows	two	devices	to	exchange	
a	bit	not	visible	to	other	CAN	devices.	This	allows	generating	pairing	keys	that	only	the	
two	participants	know.
Per	default,	CANcrypt	uses	a	dynamic	64-bit	key	to	cover	the	longest	possible	secure	
data	block,	8	bytes.	From	this	key,	a	pseudo	one-time	pad	is	generated	and	changes	
frequently.	 How	 often	 new	 random	 bits	 are	 introduced	 to	modify	 the	 shared	 key	 is	
configurable.	128-bit	keys	for	AES-128	are	also	supported.
CANcrypt	provides	a	security	infrastructure	for	CAN	where	developers	can	still	select	
or	 customize	 specific	 security	 functions.	 It	 can	 be	 integrated	 into	 existing	 code	 at	
the	lower	driver	level,	making	it	independent	from	protocol	or	application	layers	above.

iCC 2017 CAN in Automation

08-6

Typical	CAN	attack	vectors	and	security	
requirements

An attacker who has gained CAN access to
a system was either able to physically install
some sniffer device or achieved access to a
CAN-connected device remotely. Either way,
the attacker should be assumed to be able to
receive and transmit CAN messages on the
bus.

In many CAN systems, authentication is
the only security requirement, addressing
questions such as: How can we verify that a
received message was really transmitted by
the authorized sender and was not injected
by some intruder? How can we detect if an
intruder disabled an existing CAN device
and tried to replace it by mimicking its
communication behavior?

Figure 1: An attacker’s access options

Often in CAN systems, encryption is less
important. In an industrial or automotive system
it is generally more important that a control
command or sensor data is authenticated
because the data itself is not regarded a
“secret”. A use case for encryption might
be configuration data, which however
tends to be bigger than the average CAN
message, allowing common Internet
encryption methods to be used, as previously
pointed out.

Manipulation	detection

Already today, activities originating from
possible attacks can sometimes be detected
as a “side effect”. The CANopen [2]
application profile CiA 447[3] for add-on car
electronics for example has a built-in protection

against “spoofing” of nodes. In CiA 447 with
its highly dynamic nature, node IDs can be
re-assigned upon every system wakeup.
In order to avoid accidental duplicate node
IDs, every device must monitor the network
for CAN message IDs that it transmits
itself. If such a message is detected,
the device issues an emergency message.
So if an intruder injects a message
“owned” by another device an appropriate
emergency message would immediately
show up on the network, invalidating all its
communication.

For a successful attack on such a system, an
intruder would need to disable the node
“owning” (transmitting) the CAN messages
in question first, before introducing a device
that mimics the behavior of the node.

What to authenticate

Any security feature will add some
overhead to the communication. Such
added security data includes a secure
checksum and housekeeping values as
well as messages to maintain the overall
security mechanism. This eats up valuable
bandwidth, and potentially slows down
communication.

Thinking about a minimal authentication
feature, all we will need is a secure
heartbeat message though, as long as
we add it to a system where all nodes
monitor their own messages like in the
CiA 447 example described above. Each
individual message does not need to be
protected if it is continuously monitored
and manipulations are reported or cause a
secure heartbeat timeout.

Minimal	authentication	with	self-
monitoring	and	a	secure	heartbeat

Devices participating in the secure
communication scheme are grouped. The
security foundation is a shared symmetric
key from which a dynamically changing
key is generated.

iCC 2017 CAN in Automation

08-7

Figure 2: Grouping

Each participating CAN device monitors the
network for injected/duplicate messages
that use a CAN ID that it itself uses for
transmissions. As long as no injection or
manipulation is detected, the device keeps
producing a secure heartbeat. Otherwise, it
produces an emergency or alert message.

On the receiving side, secure messages are
only authenticated with the reception of the
following secure heartbeat. The injection/
manipulation detection alone is not enough,
as we cannot guarantee that the emergency
message is successfully transmitted; after all,
an intruder could try to specifically block that
message with collisions. Only a successfully
received secure heartbeat authenticates “all
previous messages” from a device.

The disadvantage of such a system is that
the secure heartbeat cycle time directly
impacts the system control cycle time and
therefore needs to be faster than a typical
heartbeat period such as the one used in
CANopen. Depending on the authentic-
cation requirements of a system, a control
unit must wait for the secure heartbeat
timeout to decide if the previous messages
are authenticated. This calls for a secure
heartbeat period as short as 100 milliseconds
or less.

For completeness please note that due to
transmit and receive FIFOs and processing
delays, a secure message received just
prior to a secure heartbeat might still be
an injection. However, that would still be
detected as such by the transmitter of the
secure heartbeat who would immediately
produce an emergency or alert and stop
producing the secure heartbeat.

Key	management	challenges

As with any security system, the
management of the used keys can be a
tougher challenge than applying the security
methods to the communication. Assuming
the use of a shared (symmetric) key for the
main security features, the question arises
when and how this key finds its way into
the individual devices and where we keep
copies of it. Another challenge is the dynamic
update/modification of the shared key. If all
participating devices continuously update
the key, the specific security algorithms do
not need to be very strong. An often updated
key creates a one-time pad that even with a
simple XOR algorithm produces a very high
security level. The question is: How good /
random is the one-time pad?

Key	hierarchy

With a key hierarchy a device can have
multiple authorization levels. The original
manufacturer could use the highest priority
key – only this key would allow a factory
reset or to activate a possible bootloader
to re-program the flash memory in the
device. The next priority level down could
be the “system integrator” level which would
allow combining devices from multiple
manufacturers in one system. The key for
this level would allow restoring a system
default configuration. And another priority
level could be for the “owner” or technician
that needs to be able to replace a single
device within the system. This authorization
level would support pairing and grouping of
the components in a system.

Figure 3: Key hierarchy

iCC 2017 CAN in Automation

08-8

Preferably, the lowest priority key level used
to pair/group multiple components would
not be stored anywhere outside the system.
Upon original pairing/grouping, a random
shared (symmetric) key would be generated
and exchanged between the participating
devices and stored locally by each device.

Figure 3 shows that optionally the device’s
serial number may also be included in the
generation cycle for the initial permanent
key, which would be used as a base for the
dynamic one-time key pad used.

Secure	key	exchange

The method used to exchange keys
described in the following does not use any
“direct” CAN communication. Anyone just
monitoring the exchanged CAN messages
will not be able to determine the values
exchanged. The method is loosely based on
principals introduced by a paper from Bosch
[4] at the last iCC.

By monitoring CAN communications at
the message (data link) level, an observer
cannot determine the physical device
that sent an individual message, because
in CAN, any device may transmit any
message. As an example, let us allow two
nodes (named “configurator” and “device”)
to transmit messages with the CAN IDs
0010h and 0011h and data length zero.
The bits transmit within a “bit select time
window” that starts with a trigger message
and has a configurable length, for example
25 milliseconds. Each node must randomly
send one of the two messages at a random
time within the time window.

Figure 4: Bit generation cycle

At the end of the bit select time window, a trace
recording of the CAN messages exchanged
will show one of the following scenarios:

1. One or two messages of CAN ID 0010h
2. One each of CAN ID 0010h and 0011h
3. One or two messages of CAN ID 0011h

Note that if two identical messages collide,
they’ll be visible just once on the network.
If 0010h and 0011h collide, 0010h is
transmitted first followed by 0011h (basic
CAN arbitration).

Let us have a closer look at case 2 – one
each. If the messages are transmitted
randomly within the bit response time
window, an observer has no clue as to which
device sent which message. However, the
devices themselves know it! Now a simple “if”
statement can determine the random bit for
both participants:

IF I am the configurator device
 IF I transmitted 0010h and also saw a 0011h
 common bit is 0
 ELSE IF I transmitted 0011h and also saw 0010h
 common bit is 1
 ELSE
 both used same message, no bit determined
ELSE I am a device
 IF I transmitted 0010h and also saw a 0011h
 common bit is 1
 ELSE IF I transmitted 0011h and also saw 0010h
 common bit is 0
 ELSE
 both used same message, no bit determined

Unfortunately, we cannot use cases 1 and
3, so if those happen, both nodes need to
recognize it and retry (try again in the next bit
select time window).

To prevent an observer from identifying
individual device delays, each device should
choose two good random values for each
cycle. The devices should randomly pick one
of the two messages (0010h or 0011h) and
randomly select a delay from zero to two-third
of the bit select time window.

There are several options to optimize this cycle
as well as allowing one device to “enforce”
a certain key to the other. Depending on

iCC 2017 CAN in Automation

08-9

version and timeout, this method can be used
to exchange a key of 64 bits within about
one second.

Dynamic	one-time	keypad

All devices participating in the secure
communication use a locally stored
symmetrical key as a basis. During initialization
and detection of their communication partners,
the participating devices also exchange
random numbers. The combination of all
random numbers exchanged during the initial
detection is used to generate the initial one-
time keypad. This ensures a unique shared
initial dynamic one-time keypad with every
system start.

Figure 5: One-time pad generation

Once the devices are paired or grouped,
the shared dynamic one-time key pad gets
periodically updated, for example using
random values from the secure heartbeat
and an optional message counter.

Secure heartbeat implementation

Figure 6: Secure heartbeat contents

All devices participating in the secure
communication produce a secure heartbeat.
The secure heartbeat is synchronized, in
one cycle all participants transmit their own
security heartbeat once.

Figure 7: Secure heartbeat transmit

The main component of each secure
heartbeat is a three-byte random value
with a one-byte checksum. All four bytes
are encrypted based on the current shared
dynamic key.

All receivers decrypt the four bytes and
verify if the checksum matches. If it does,
the heartbeat is considered “confirmed”.

Figure 8: Secure heartbeat receive

All (decrypted) random values of all
participating nodes are used to update the
shared one-time key pad which is then used
for the next cycle. This ensures changes to
the dynamic shared key with every use.

In CANopen [2], the secure heartbeat fits
into the manufacturer specific fields of
the emergency message. This allows the

iCC 2017 CAN in Automation

08-10

implementation of the secure heartbeat as
a variation of the no error / emergency reset
message already defined in CANopen.

Point-to-point communication

When using pairing instead of grouping,
CANcrypt supports more advanced methods
involving individual message authentication
and encryption. In this case, individual
messages are encrypted and authenticated
with a preamble message that contains
the security overhead information for the
following message.

Figure 9: Secure transmit with preamble

Figure 9 shows how a preamble is build.
Unused data of the original message is filled
with random values. The preamble contains
a checksum covering both messages and
control/status values. Per default, both the
preamble with the checksum and the main
message are encrypted. As the total data
size is 128 bits, algorithms supporting a
128-bit key size may be used (for example
AES-128).

Figure 10: Secure transmit with preambl

Figure 10 illustrates the receiving side.
Both the preamble and data message
are decrypted and then analyzed. Only if
the checksum matches is the message
considered “authorized” and passed on to
the receive FIFO.

Implementation	notes

Looking at existing systems already in
use, one of the challenging questions is
how security can be added with minimal
changes to the software. Often, security
is attempted to be added to a higher
communication layer. However, the higher up
this is added, the more changes to existing
software very close to the application level
are needed.

The implementation for CANcrypt on the
other hand can happen entirely at the
driver level with the only requirement being
that FIFO buffers are used. To all software
layers above the driver, CANcrypt is largely
transparent and no software changes
are required on the application level. The
application will simply not receive data that
is not secure as the driver will only pass on
messages that are authenticated.

Figure 11: CANcrypt processes

Figure 12 shows in more detail how the
CANcrypt processes are incorporated into a
typical embedded system using one receive
and one transmit FIFO.

iCC 2017 CAN in Automation

08-11

Figure 12: CANcrypt process integration

The main entry points for CANcrypt are on
the receive side, before a message is added
to the receive FIFO (so CANcrypt can
only insert the message if it is considered
“secure”, i.e. authenticated) and on the
transmit side, also before it gets inserted into
the transmit FIFO (to possibly add security
overhead like a preamble),

CAN-FD	or	higher-layer	protocols

The functions introduced by this paper apply
to both CAN and CAN-FD. Where the CAN
implementation is based on key lengths of
64 bits and 128 bits, a CAN-FD adaptation
may also use keys with a length of 256 bits.

The implementation is independent of the
protocol as it can be done on the driver level.
Unsecure (not authenticated) messages
can simply be hidden from the application.

Summary

This paper highlights the key technology
and features used by the CANcrypt system.
CANcrypt is a security framework that still
allows developers using it to select the
individual security methods or algorithms
used. These range from a simple grouping
with authentication-only to a more secure
pairing of two nodes with both authentication
and encryption.

CANcrypt security is based on symmetric
keys of 64 or 128 bits and data sizes of
up to 128 bits (dual message). All security
algorithms suitable for a 128-bit data/key
length can be used, including AES-128 or
comparable algorithms for the security.

References
[1] Implementing scalable CAN security with

CANcrypt, book by Olaf Pfeiffer
[2] CiA 301, CANopen application layer and

communication profile
[3] CiA 447, CANopen application profile for

add-on car electronics
[4] Plug-and-secure communication for CAN,

paper at 15th iCC by Andreas Müller, Bosch

Olaf Pfeiffer
Embedded Systems Academy GmbH
Bahnhofstr. 17
DE-30890 Barsinghausen
Tel.: +49-5105-582-7897
Fax: +49-5105-584-0735
opfeiffer@esacademy.de
www.esacademy.com

Christian Keydel
Embedded Systems Academy GmbH
Bahnhofstr. 17
DE-30890 Barsinghausen
Tel.: +49-5105-582-7897
Fax: +49-5105-584-0735
ckeydel@esacademy.de
www.esacademy.com

