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This paper summarizes the technical 
methods and features that are used in the 
CANcrypt security system introduced in the 
book “Implementing scalable CAN security 
with CANcrypt” [1].

Limits	of	CAN	specific	security

When looking at security for existing  
CAN based communication then some 
cases can be excluded from further analysis. 
These are the cases that either we cannot 
protect a system from or cases for which 
there are already a number of solutions 
available.

If an intruder has access to a CAN system 
at a level where they can inject any CAN 
message at any rate, it allows them to run a 
denial of service style attack by flooding the 
CAN bus with high priority messages. It then 
becomes unusable for other participants 
which has a similar effect as physically 
cutting the CAN signal lines. In other words, 
once the door is open to an intruder, a 
complete shutdown of the system cannot 
be prevented. However, typically an intruder 
would not want to break a system but instead 

extract or manipulate status or control 
information. Safeguarding the integrity of a 
system against this type of attack therefore 
has a higher priority.

For larger blocks of data there are common 
end-to-end security and encryption standards 
used on the Internet such as SSL. They  
can be applied to CAN communications,  
too, but only in combination with a  
peer-to-peer transport protocol on top of CAN 
such as CANopen segmented SDO transfer 
where larger blocks of data are split into  
small segments that fit into single CAN 
messages.

One challenge securing “generic” CAN 
communications is to develop a security 
mechanism that can be applied to a single 
message which includes for example sensor 
data of just a few bytes, or even single-bit 
commands that each control an individual 
switch like unlocking a door, and that also 
includes those messages that make use 
of the broadcast feature of CAN by having 
multiple receivers (one-to-many). Common 
Internet security protocols are not suitable 
for these scenarios.

Commonly	used	security	methods	for	authentication	and	encryption/decryption	on	the	
Internet	cannot	easily	be	applied	to	CAN/CANopen.	The	CANcrypt	framework	described	
in	the	book	“Implementing	scalable	CAN	security	with	CANcrypt”[1]	adds	different	levels	
of	security	features	to	CAN.	The	CANcrypt	system	is	protocol	independent	and	can	be	
used	with	CANopen	or	other	higher-layer	CAN	protocols.	A	manager	/	configurator	is	
only	required	for	the	generation	and	exchange	of	keys,	but	not	during	regular	operation.
For	key	generation,	CANcrypt	uses	a	CAN	feature	that	allows	two	devices	to	exchange	
a	bit	not	visible	to	other	CAN	devices.	This	allows	generating	pairing	keys	that	only	the	
two	participants	know.
Per	default,	CANcrypt	uses	a	dynamic	64-bit	key	to	cover	the	longest	possible	secure	
data	block,	8	bytes.	From	this	key,	a	pseudo	one-time	pad	is	generated	and	changes	
frequently.	 How	 often	 new	 random	 bits	 are	 introduced	 to	modify	 the	 shared	 key	 is	
configurable.	128-bit	keys	for	AES-128	are	also	supported.
CANcrypt	provides	a	security	infrastructure	for	CAN	where	developers	can	still	select	
or	 customize	 specific	 security	 functions.	 It	 can	 be	 integrated	 into	 existing	 code	 at	 
the	lower	driver	level,	making	it	independent	from	protocol	or	application	layers	above.
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Typical	CAN	attack	vectors	and	security	
requirements

An attacker who has gained CAN access to 
a system was either able to physically install 
some sniffer device or achieved access to a 
CAN-connected device remotely. Either way, 
the attacker should be assumed to be able to 
receive and transmit CAN messages on the 
bus.

In many CAN systems, authentication is 
the only security requirement, addressing 
questions such as: How can we verify that a 
received message was really transmitted by 
the authorized sender and was not injected 
by some intruder? How can we detect if an 
intruder disabled an existing CAN device 
and tried to replace it by mimicking its 
communication behavior?

 

Figure 1: An attacker’s access options

Often in CAN systems, encryption is less 
important. In an industrial or automotive system 
it is generally more important that a control 
command or sensor data is authenticated 
because the data itself is not regarded a 
“secret”. A use case for encryption might  
be configuration data, which however  
tends to be bigger than the average CAN 
message, allowing common Internet 
encryption methods to be used, as previously 
pointed out.

Manipulation	detection

Already today, activities originating from 
possible attacks can sometimes be detected 
as a “side effect”. The CANopen [2]  
application profile CiA 447[3] for add-on car 
electronics for example has a built-in protection 

against “spoofing” of nodes. In CiA 447 with 
its highly dynamic nature, node IDs can be 
re-assigned upon every system wakeup. 
In order to avoid accidental duplicate node 
IDs, every device must monitor the network 
for CAN message IDs that it transmits 
itself. If such a message is detected,  
the device issues an emergency message. 
So if an intruder injects a message 
“owned” by another device an appropriate 
emergency message would immediately 
show up on the network, invalidating all its 
communication.

For a successful attack on such a system, an  
intruder would need to disable the node 
“owning” (transmitting) the CAN messages 
in question first, before introducing a device 
that mimics the behavior of the node.

What to authenticate

Any security feature will add some 
overhead to the communication. Such 
added security data includes a secure 
checksum and housekeeping values as 
well as messages to maintain the overall 
security mechanism. This eats up valuable 
bandwidth, and potentially slows down 
communication. 

Thinking about a minimal authentication 
feature, all we will need is a secure 
heartbeat message though, as long as 
we add it to a system where all nodes 
monitor their own messages like in the 
CiA 447 example described above. Each 
individual message does not need to be 
protected if it is continuously monitored 
and manipulations are reported or cause a 
secure heartbeat timeout.

Minimal	authentication	with	self-
monitoring	and	a	secure	heartbeat

Devices participating in the secure 
communication scheme are grouped. The 
security foundation is a shared symmetric 
key from which a dynamically changing 
key is generated.
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Figure 2: Grouping

Each participating CAN device monitors the 
network for injected/duplicate messages 
that use a CAN ID that it itself uses for 
transmissions. As long as no injection or 
manipulation is detected, the device keeps 
producing a secure heartbeat. Otherwise, it 
produces an emergency or alert message.

On the receiving side, secure messages are 
only authenticated with the reception of the 
following secure heartbeat. The injection/
manipulation detection alone is not enough, 
as we cannot guarantee that the emergency 
message is successfully transmitted; after all, 
an intruder could try to specifically block that 
message with collisions. Only a successfully 
received secure heartbeat authenticates “all 
previous messages” from a device.

The disadvantage of such a system is that 
the secure heartbeat cycle time directly 
impacts the system control cycle time and 
therefore needs to be faster than a typical 
heartbeat period such as the one used in 
CANopen. Depending on the authentic-
cation requirements of a system, a control 
unit must wait for the secure heartbeat 
timeout to decide if the previous messages 
are authenticated. This calls for a secure 
heartbeat period as short as 100 milliseconds 
or less.

For completeness please note that due to 
transmit and receive FIFOs and processing 
delays, a secure message received just 
prior to a secure heartbeat might still be 
an injection. However, that would still be 
detected as such by the transmitter of the 
secure heartbeat who would immediately 
produce an emergency or alert and stop 
producing the secure heartbeat.

Key	management	challenges

As with any security system, the 
management of the used keys can be a 
tougher challenge than applying the security 
methods to the communication. Assuming 
the use of a shared (symmetric) key for the 
main security features, the question arises 
when and how this key finds its way into 
the individual devices and where we keep 
copies of it. Another challenge is the dynamic 
update/modification of the shared key. If all 
participating devices continuously update 
the key, the specific security algorithms do 
not need to be very strong. An often updated 
key creates a one-time pad that even with a 
simple XOR algorithm produces a very high 
security level. The question is: How good / 
random is the one-time pad?

Key	hierarchy

With a key hierarchy a device can have 
multiple authorization levels. The original 
manufacturer could use the highest priority 
key – only this key would allow a factory 
reset or to activate a possible bootloader 
to re-program the flash memory in the 
device. The next priority level down could 
be the “system integrator” level which would 
allow combining devices from multiple 
manufacturers in one system. The key for 
this level would allow restoring a system 
default configuration. And another priority 
level could be for the “owner” or technician 
that needs to be able to replace a single 
device within the system. This authorization 
level would support pairing and grouping of 
the components in a system.

 

Figure 3: Key hierarchy
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Preferably, the lowest priority key level used 
to pair/group multiple components would 
not be stored anywhere outside the system. 
Upon original pairing/grouping, a random 
shared (symmetric) key would be generated 
and exchanged between the participating 
devices and stored locally by each device.

Figure 3 shows that optionally the device’s 
serial number may also be included in the 
generation cycle for the initial permanent 
key, which would be used as a base for the 
dynamic one-time key pad used.

Secure	key	exchange

The method used to exchange keys 
described in the following does not use any 
“direct” CAN communication. Anyone just 
monitoring the exchanged CAN messages 
will not be able to determine the values 
exchanged. The method is loosely based on 
principals introduced by a paper from Bosch 
[4] at the last iCC.

By monitoring CAN communications at 
the message (data link) level, an observer 
cannot determine the physical device 
that sent an individual message, because 
in CAN, any device may transmit any 
message. As an example, let us allow two 
nodes (named “configurator” and “device”) 
to transmit messages with the CAN IDs 
0010h and 0011h and data length zero. 
The bits transmit within a “bit select time 
window” that starts with a trigger message 
and has a configurable length, for example 
25 milliseconds. Each node must randomly 
send one of the two messages at a random 
time within the time window.

 
Figure 4: Bit generation cycle

At the end of the bit select time window, a trace 
recording of the CAN messages exchanged 
will show one of the following scenarios:

1. One or two messages of CAN ID 0010h
2. One each of CAN ID 0010h and 0011h
3. One or two messages of CAN ID 0011h

Note that if two identical messages collide, 
they’ll be visible just once on the network.  
If 0010h and 0011h collide, 0010h is 
transmitted first followed by 0011h (basic 
CAN arbitration).

Let us have a closer look at case 2 – one 
each. If the messages are transmitted 
randomly within the bit response time 
window, an observer has no clue as to which 
device sent which message. However, the 
devices themselves know it! Now a simple “if” 
statement can determine the random bit for 
both participants:

IF I am the configurator device
 IF I transmitted 0010h and also saw a 0011h 
  common bit is 0
 ELSE IF I transmitted 0011h and also saw 0010h
  common bit is 1
  ELSE
     both used same message, no bit determined
ELSE I am a device
 IF I transmitted 0010h and also saw a 0011h
  common bit is 1
 ELSE IF I transmitted 0011h and also saw 0010h
  common bit is 0
 ELSE
  both used same message, no bit determined

Unfortunately, we cannot use cases 1 and 
3, so if those happen, both nodes need to 
recognize it and retry (try again in the next bit 
select time window).

To prevent an observer from identifying 
individual device delays, each device should 
choose two good random values for each 
cycle. The devices should randomly pick one 
of the two messages (0010h or 0011h) and 
randomly select a delay from zero to two-third 
of the bit select time window.

There are several options to optimize this cycle 
as well as allowing one device to “enforce” 
a certain key to the other. Depending on 
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version and timeout, this method can be used 
to exchange a key of 64 bits within about 
one second.

Dynamic	one-time	keypad

All devices participating in the secure 
communication use a locally stored 
symmetrical key as a basis. During initialization 
and detection of their communication partners, 
the participating devices also exchange 
random numbers. The combination of all 
random numbers exchanged during the initial 
detection is used to generate the initial one-
time keypad. This ensures a unique shared 
initial dynamic one-time keypad with every 
system start.

 
Figure 5: One-time pad generation

Once the devices are paired or grouped, 
the shared dynamic one-time key pad gets 
periodically updated, for example using 
random values from the secure heartbeat 
and an optional message counter.

Secure heartbeat implementation

 

Figure 6: Secure heartbeat contents

All devices participating in the secure 
communication produce a secure heartbeat. 
The secure heartbeat is synchronized, in 
one cycle all participants transmit their own 
security heartbeat once.

 
Figure 7: Secure heartbeat transmit

The main component of each secure 
heartbeat is a three-byte random value 
with a one-byte checksum. All four bytes 
are encrypted based on the current shared 
dynamic key.

All receivers decrypt the four bytes and 
verify if the checksum matches. If it does, 
the heartbeat is considered “confirmed”.

 
Figure 8: Secure heartbeat receive

All (decrypted) random values of all 
participating nodes are used to update the 
shared one-time key pad which is then used 
for the next cycle. This ensures changes to 
the dynamic shared key with every use.

In CANopen [2], the secure heartbeat fits 
into the manufacturer specific fields of 
the emergency message. This allows the 
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implementation of the secure heartbeat as 
a variation of the no error / emergency reset 
message already defined in CANopen.

Point-to-point communication

When using pairing instead of grouping, 
CANcrypt supports more advanced methods 
involving individual message authentication 
and encryption. In this case, individual 
messages are encrypted and authenticated 
with a preamble message that contains 
the security overhead information for the 
following message.

 

Figure 9: Secure transmit with preamble

Figure 9 shows how a preamble is build. 
Unused data of the original message is filled 
with random values. The preamble contains 
a checksum covering both messages and 
control/status values. Per default, both the 
preamble with the checksum and the main 
message are encrypted. As the total data 
size is 128 bits, algorithms supporting a 
128-bit key size may be used (for example 
AES-128).

 
Figure 10: Secure transmit with preambl

Figure 10 illustrates the receiving side. 
Both the preamble and data message 
are decrypted and then analyzed. Only if 
the checksum matches is the message 
considered “authorized” and passed on to 
the receive FIFO.

Implementation	notes

Looking at existing systems already in  
use, one of the challenging questions is  
how security can be added with minimal 
changes to the software. Often, security 
is attempted to be added to a higher 
communication layer. However, the higher up 
this is added, the more changes to existing 
software very close to the application level 
are needed.

The implementation for CANcrypt on the 
other hand can happen entirely at the 
driver level with the only requirement being 
that FIFO buffers are used. To all software 
layers above the driver, CANcrypt is largely 
transparent and no software changes 
are required on the application level. The 
application will simply not receive data that 
is not secure as the driver will only pass on 
messages that are authenticated.

 

Figure 11: CANcrypt processes

Figure 12 shows in more detail how the 
CANcrypt processes are incorporated into a 
typical embedded system using one receive 
and one transmit FIFO.
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Figure 12: CANcrypt process integration

The main entry points for CANcrypt are on 
the receive side, before a message is added 
to the receive FIFO (so CANcrypt can 
only insert the message if it is considered 
“secure”, i.e. authenticated) and on the 
transmit side, also before it gets inserted into 
the transmit FIFO (to possibly add security 
overhead like a preamble),

CAN-FD	or	higher-layer	protocols

The functions introduced by this paper apply 
to both CAN and CAN-FD. Where the CAN 
implementation is based on key lengths of 
64 bits and 128 bits, a CAN-FD adaptation 
may also use keys with a length of 256 bits.

The implementation is independent of the 
protocol as it can be done on the driver level. 
Unsecure (not authenticated) messages 
can simply be hidden from the application.

Summary

This paper highlights the key technology 
and features used by the CANcrypt system. 
CANcrypt is a security framework that still 
allows developers using it to select the 
individual security methods or algorithms 
used. These range from a simple grouping 
with authentication-only to a more secure 
pairing of two nodes with both authentication 
and encryption. 

CANcrypt security is based on symmetric 
keys of 64 or 128 bits and data sizes of 
up to 128 bits (dual message). All security 
algorithms suitable for a 128-bit data/key 
length can be used, including AES-128 or 
comparable algorithms for the security.
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