
iCC 2020 CAN in Automation

52

CAN	XL	Error	Detection	Capabilities

Dr. Arthur Mutter, Robert Bosch

1.	Introduction

CAN XL is the next step in the evolution of 
CAN. It is currently being specified inside 
the CiA’s CAN XL Special Interest Group. 
The first specification meeting took place in 
Nuremberg (Germany) on December 17th 
2018. The CiA610 1 specification docu¬ment, 
which focuses on OSI layer 2 (known as 
CAN XL protocol), was not yet finished at the 
time of writing this paper. Con¬se¬quently, 
the final CiA601 1 specifi-cation may show 
differen¬ces compared to the content 
presented in this paper. [3] gives an overview 
about the current CAN XL status.

Some of the main features of CAN XL are:
 • data field size up to 2048 byte
 • gross bit rate of 10Mbit/s and more
 • strong error detection capabilities

With this set of features CAN enables the 
usage of higher layer protocols like IP (Internet 
Protocol). At the same time, it eases the 
implementation of safety critical applications 
with its excellent error detec-tion capabilities 
and its well-known robust-ness.

CAN	XL	offers	data	rates	and	payload	sizes	that	are	many	times	higher	than	in	Classical	
CAN	and	CAN	FD	 [1],	 [2].	Besides	 this,	CAN	XL	 also	provides	 improved	 error	 detection	
capabilities.
Error	detection	is	a	crucial	functionality	provided	by	communication	protocols.	A	receiving	
node	has	to	be	able	to	judge	if	a	frame	was	received	with	or	without	errors.	Autonomous	
driving	and	other	safety	relevant	applications	require	that	frame	errors	are	detected	with	a	
very	high	probability.	The	acceptance	of	an	erroneous	frame	should	be	practically	impossible.
This	paper	first	introduces	the	three	CAN	Error	Types	known	in	literature	that	might	occur	in	
a	frame	in	harsh	environments:	(1)	bit	error,	(2)	bit	drop	and	bit	insertion,	(3)	burst	errors.	The	
two	main	pillars	of	the	CAN	error	detection	mechanism	are:	(A)	the	cyclic	redundancy	code	
(CRC)	check	and	(B)	the	format	checks.	Both	pillars	are	strengthened	during	the	currently	
ongoing	specification	of	CAN	XL,	to	fit	to	tomorrow’s	applications.	
This	paper	explains	how	these	pillars	were	improved.	Therefor	it	shows	the	reasons	for	the	
chosen	CRC	concept	of	having	both	a	header	CRC	and	a	frame	CRC	in	a	CAN	XL	frame.	
Further,	 it	 introduces	 the	 available	 format	 checks	 in	 CAN	 XL.	 Finally,	 the	 paper	 shows	
systematically	how	the	CAN	XL	error	detection	mechanisms	master	to	detect	the	three	error	
types.	A	deep	dive	into	the	properties	and	strengths	of	the	used	CRC	polynomials	is	given	
in	[9].

Two very essential functions in a 
communi¬cation protocol are the Error 
Detection and the Error Handling. They 
have a large impact on the reliability of the 
communi¬cation system.

The focus of this paper focus are the Error	
Detection	Mechanisms in CAN XL.

This paper consist of three parts. Part 1 
introduces the CAN XL error detection 
mechanisms and explains how these were 
improved compared to CAN FD. In this part, 
the reasons are given for the chosen CRC 
concept of having a header CRC and a frame 
CRC in a CAN XL frame. Part 2 introduces 
the error types known in literature, along with 
their properties. Part 3 performs a systematic 
evaluation to show how the CAN XL error 
detection mecha¬nisms master to detect all 
known error types up to a given extent. 

2.	CAN	XL	Error	Detection	Mechanisms	

In CAN communication, all nodes in a  etwork 
check the validity of each frame, including the 
transmitter of the current frame. 



iCC 2020 CAN in Automation

53

 
 
 
 
Figure 1: CAN XL Frame Format 

The checks are based on a combi- 
nation of several protocol mechanisms for 
error detection. They are described in the 
following. 

Figure 1 shows the current version 
of the CAN XL frame format. The bits  
used to implement additional or updated  
error detection mechanisms (compared to 
CAN FD) are shaded. 

2.1 Bit Monitoring

Bit monitoring means that a node that 
transmits a bit also monitors the bit values on 
the CAN bus. If the transmitted and received 
(monitored) bit values differ, the reaction of 
the node depends on the bit position in the 
frame. As example, if the transmitting node 
transmitted a 1 and received a 0 in the data 
field, it regards this as a bit error. However, 
if the same happens in the arbitration field, it 
regards this as arbitration lost.

A detailed explanation of the bit monitoring 
in CAN FD can be found in [10]. If error 
signaling (via Error Frames) is enabled 
in CAN XL, bit monitoring is nearly equal 
to that in CAN FD. For the case that error 
signaling is disabled, bit monitoring is not 
yet fully specified in the current CiA610-1 
draft.

2.2 Frame Format Check

Most parts of a CAN frame (identifier, control, 
or data bits) are variable or are calculated 
from the variable bits (CRC sequence), but 
some bits (delimiters, end of frame) have a 
fixed format (see Figure 1). The bit values 
of these bits are marked in the figure with 
a bold line. A receiver detects a form error 
when it samples a fixed format bit with the 
wrong value. 

A special case is the reserved bit following 
the XLF bit in CAN XL frames. The reserved 
bit is expected to be dominant. In current 

applications, a form error is detected 
when this bit is sampled as recessive. For 
future applications, this bit may be used to 
distinguish between the CAN XL frame format 
and another – not yet defined – new frame 
format. When this alternative is selected (by 
software configu-ration) and if then this bit is 
sampled as recessive, the receiver enters a 
protocol exception state until the bus is idle 
again. This allows the introduction of future 
new frame formats that are tolerated by 
existing CAN XL implementations.

A node transmitting a CAN XL frame sends 
the FDF and XLF bits as recessive (logical 
‘1’). These bits are part of the Arbitration 
field, which is different compared to CAN 
FD. This means, if the transmitting node 
samples one of these bits as dominant, it 
loses arbitration and becomes a receiver.

In CAN XL, beside the bit rate, also the 
mode of the transceiver can be switched. 
In the error free case, the CAN XL protocol 
controller signals the mode switch to the 
transceiver during the bits AL1 and AH1. 
The signaling of the mode switch to the 
transceiver, as well as the mode switch of 
the transceiver may have side effects on the 
RXD input signal of the protocol controller. 
Due to this, a CAN XL node does not perform 
a format check at the fixed format bits (bold 
lines mark bit value) AL1 and AH1.

2.3 Format Check Pattern (FCP)

The FCP field contains only fixed format 
bits and is used by a receiver for two 
purposes. The first purpose is that it 
provides a synchronization edge before the 
receiver switches from the data phase to the 
arbitration phase. 

The second purpose is that a receiver 
can check with help of the FPC field if 
its frame decoding is aligned with the 
actual transmitted bit position. Disturbed 
synchronization edges may lead to so called 



iCC 2020 CAN in Automation

54

bit insertions and bit drops in the receiver 
(see chapter 4). A receiver can detect, with 
help of the FPC field, a misalignment of 3 bit 
in both directions. 

2.4 Cyclic Redundancy Check

In general, the transmitter and the receivers 
of a frame calculate the CRC sequence. 
After reception of the CRC sequence, each 
receiver performs a CRC check, to judge if it 
received the frame correctly or not. 

Requirements	&	CRC	Concept
For the CRC’s error detection capability 
to succeed with a very high probability the 
following two requirements have to be fulfilled:
 • RQ1: Transmitter and receiver of the  
  frame calculate the CRC sequence  
  based on the equal number bits.
 • RQ2: The receiver checks the CRC  
  sequence at the right position inside the  
  transmitted frame. 

To fulfill RQ1, the CAN XL frame format uses 
fixed stuff bits (see chapter 1.6) in nearly the 
whole frame. Dynamic stuff bits are only used 
in the first bits of the header, to be compatible 
to CAN FD. A bit insertion or drop error at a 
dynamic stuff condition changes the number 
of bits fed into the CRC. As the error just adds 
or removes a dynamic stuff bit, the format 
checks described up to now cannot detect 
that error. With fixed stuff bits, the frame has 
a defined length in bits and the receiver can 
feed the exact number of bits into the CRC 
calculation.

To fulfill RQ2, we need to make sure that a 
transmission error cannot change easily 
the position, where the receiver expects the 
CRC. For example, if the DLC (Data Length 
Code) is falsified, the receiver checks the 
CRC at a wrong position. To solve this, CAN 
XL uses, like Flexray, a header CRC and a 
frame CRC. The header CRC safeguards a 
header of well-known length. If a receiver saw 
a valid header CRC, it is very likely that the 
DLC is correct. With the correct DLC, the data 
field length is also well known. 

Scope	of	the	Frame	CRC
The frame CRC is calculated over the 
header and the data field (see Figure 1), 

which is similarly done in Flexray. The 
author in [9] describes in detail, which bits 
are included and which are excluded from 
CRC calculation. This “double checking” 
of the header is done, because on the 
one side the frame CRC performance is 
practically not weakened by safeguarding 
these few additional header bits. On the 
other side, “double checking” increases the 
probability to detect transmission errors in the  
header, which were not detected by the 
header CRC.

Dynamic	Stuff	Bits
If the dynamic stuff bits are not included into 
a CRC calculation (like in Classical CAN), 
an undetectable error can be caused by 
two bit flips, if one bit flip adds and the other 
removes a dynamic stuff condition. This case 
is described in [4]. If the dynamic stuff bits are 
included into the CRC calculation (like in CAN 
FD), the CRC calculation may be vulnerable 
to bit insertions and bit drops at dynamic stuff 
conditions [10]. CAN XL includes the dynamic 
stuff bits into the header CRC calculation, 
but excludes them from the frame CRC 
calculation. This enables detection of both 
aforementioned error cases.

In [9] the author assesses the performance of 
the CAN XL CRC polynomials and compares 
the results with the CRC polynomials used 
in Flexray and Ethernet. Both CAN XL CRC 
polynomials guarantee at least a Hamming 
distance (HD) of 6, up to the largest  
CAN XL frame length. This means that at least 
5 bit errors can be detected. Beside this, both 
CRCs are able to detect any odd number of 
bit errors. Regarding burst errors, the header 
CRC can detect one burst error of up to  
13 bit length, and the frame CRC of up to  
32 bit length.

2.5 Acknowledgement

Transmitters expect to get an active 
acknowledgement for their frames, which 
is a dominant bit in the ACK slot. When a 
transmitter does not sample a dominant bit 
during ACK slot, it regards this as an ACK 
error. The transmitter considers a frame that 
does not get an acknowledgement as invalid 
and retransmits it (if retransmission is not 
intentionally disabled). 



iCC 2020 CAN in Automation

55

2.6 Stuff Rule Check

The bits of a CAN frame are coded by the 
method of bit stuffing. CAN uses as line 
coding Non-Return-to-Zero (NZR) which has 
no guaranteed edges. The purpose of stuff 
bits is to ensure that there are enough edges 
in the bit stream for resynchro-nization of the 
receivers.

Receivers check the stuff rule and detect a 
stuff error if the stuff bit has not the expected 
value.

Dynamic	Bit	Stuffing
Before the FDF bit, a dynamic stuffing rule is 
applied. That means, the transmitter inserts, 
after each sequence of five consecutive equal 
bits, one bit of inverse value, called a dynamic 
stuff bit.

Fixed	Bit	Stuffing
In the data phase, starting at DL1 bit up to the 
last bit of FCRC, a fixed stuffing rule is applied. 
That means, the transmitter inserts, after S-1 
consecutive bits a fixed stuff bit. The fixed 
stuff bit has the inverse value of its preceding 
bit. This means every Sth bit is a fixed stuff 
bit. Currently S=15, but this value may be 
decreased in the final specification, depending 
on the results of the phase margin calculations.

2.7 Dynamic Stuff Count Check

For compatibility reasons with CAN FD, 
the CAN XL frame header uses dynamic bit 
stuffing in the header before the FDF bit. To 
satisfy requirement RQ1 from chapter 2.4, 
we need to make sure that transmitter and 
receiver of a frame see the same amount of 
dynamic stuff bits.

CAN FD solved this requirement by adding 
the field SBC (Stuff Bit Count) which contains 
the number of dynamic stuff bits in the frame 
modulo 8.

CAN XL also uses this this solution and has 
therefore an SBC field in the header of the 
frame. It is located before the header CRC, 
because it is used to check the validity of 
the header. The number of dynamic stuff 
bits in a CAN XL frame is in the range 0 to 3. 
Therefore, the SBC field in the CAN XL frame 

has 3 bits, the first 2 bits contain information 
on the number of dynamic stuff bits in the  
Arbitration Field and the 3rd bit is a parity bit.

The receiver detects a header CRC error if the 
SBC does not match to the number of received 
dynamic stuff bits, or if the SBC parity does not 
match.

2.8 Interaction between Error Detection and  
 Error Signaling

CAN XL allows to enable or to disable error 
signaling. The software can enable and disable 
error signaling with a configuration bit in the 
CAN XL implementation.

In case the user disables error signaling, the 
respective CAN XL node does not transmit 
error frames.

In case the user enables error signaling, the 
error signaling is done with help of error frames, 
which is identical to the error signaling in CAN 
FD, which is described in [10]. Error signaling 
with error frames disturbs the current frame 
and thereby converts local errors into global 
errors in order to ensure data consistency in 
the network. 

3.	Improved	Error	Detection	in	CAN	XL

This chapter highlights the five improve-ments 
in the CAN XL error detection compared to 
CAN FD.

(1)	 Header	 CRC: The newly introduced 
header CRC allows checking the validity of the 
header, which includes the DLC value. This 
allows fulfilling RQ2 from chapter 2.4 and by 
this strengthens the CRC check.

(2)	Frame	CRC: CAN XL uses a 32 bit frame 
CRC with a respective CRC gene-rator 
polynomial to keep the Hamming Distance at 
6 (HD6) despite the long data field. The frame 
CRC polynomial was chosen carefully and it 
outperforms the polynomials of Ethernet and 
Flexray according to [9].

(3)	Fixed	Stuff	Bits: CAN XL uses fixed stuff 
bits in the data phase of the frame (short bits). 
This allows fulfilling RQ1 from chapter 2.4 and 
by this strengthens the CRC check.



iCC 2020 CAN in Automation

56

(4)	 Frame	 CRC	 safeguards	 the	 header: 
The frame CRC also safeguards the header, 
which means a “double checking” for the 
header. To do this effectively, it excludes the 
dynamic stuff bits. The reason for that is given 
in chapter 2.4 and can be summarized as 
follows: If the CRC calculation does not include 
dynamic stuff bits, it is vulnerable to a special 
error case known from Classical CAN [4]. If 
it includes dynamic stuff bits, it is vulnerable 
to another error case [10]. The header CRC 
safeguards the header including dynamic 
stuff bits and the frame CRC safeguards the 
header excluding dynamic stuff bits. This 
enables detection of both special error cases.

(5)	FCP	(Format	Check	Pattern): The format 
check pattern is a new field (see chapter 2.3). 
The receiver checks via FCP if it is aligned 
to the transmitted bit position. A receiver can 
detect, with help of the FPC, a misalignment 
of 3 bit in both directions. 

4.	Error	Types

This chapter gives an overview of the existing 
error types. Details to these error types are 
described in [10]. 

4.1 Bit Error (Bit Flip) 

Bit Error or Bit Flip means that a CAN node 
samples a bit with the inverse (flipped) value 
compared to the transmitted bit value. Figure 
2 shows an example for such a bit error at  
bit 3. 

Figure 2: Bit Error example

4.2 Bit Drop or Bit Insertion

Bit drop or bit insertion means that a receiving 
node drops a bit from or inserts a bit into the 
bit sequence. This is caused by a disturbed 
RXD signal and can occur only in receiving 
nodes.

In order to cause a bit drop or insertion, the 
following needs to happen: A disturbance (e.g. 
EM radiation) influences the CAN physical 
layer. As consequence, additional or shifted 

falling edges appear in the RXD signal. The 
receiving node resynchronizes, based on 
these faulty edges. This resynchronization 
may increase the phase error ([6], [2]) 
between transmitting and receiving node. 
When the absolute value of the phase error 
is above a critical level, the receiving node 
drops a bit from or inserts a bit into the bit 
sequence. 

Figure 3 shows an example for a bit drop. 
Here a resynchronization on a falsified 
edge causes the receiver to drop one bit. 
The receiver samples the transmitted bit 
sequence “100000i” as “100001” (‘i‘ stands 
for a dynamic stuff bit). 

Figure 3: Bit drop example

Important properties of bit drops and bit
insertions are [10]:
 • They can theoretically happen at any 
  position in the frame. It is not limited to 
  dynamic stuff conditions.
 • This error type requires many pre- 
  requirements: e.g. large clock tolerance
  between sender and receiver,  
  disturbance needs to hit one or more 
  dedicated edges, etc.
 • Drop and Insertion can practically not 
  happen in the same frame. However,  
  several bit drops or several bit insertions 
  may happen in the same frame.
 • Since many factors have to come 
  together, a bit drop or insertion is much  
  more difficult to cause, compared to a 
  bit error. Therefore, one bit drop or  
  insertion should be considered from the 
  likelihood point of view as a “multi bit 
  error”. 

4.3 Burst Error

Several bit errors that are locally close to 
each other are called a burst error. The burst 
length (in bit) is the distance from the first to 
the last bit error.



iCC 2020 CAN in Automation

57

We distinguish here two types of burst errors. 
Type 1 is where all bits in the burst are forced 
to the same value, e.g. by a glitch. Figure 
4 shows an example. We consider this a  
realistic type of burst error on the CAN 
physical layer. 

Figure 4: Burst Error – all bits forced to one 
value

The second type of burst error is type 2, where 
several bits are flipped, but not necessarily 
all. Figure 5 shows an example.
We assume this type of burst error is very 
unlikely to be caused by glitches.

However, this type of burst error can be 
caused by two errors, where the first error 
leads to a misalignment of the receiver and 
the second error reverts the misalignment. As 
long as the receiver is misaligned, it sees all 
transmitted bits shifted by e.g. 1 bit. This can 
be achieved by two bit errors, where the one 
adds a dynamic stuff condition and the other 
bit error removes a dynamic stuff condition 
[4]. Consider that the CAN XL frame uses 
dynamic bit stuffing only at the beginning 
of the frame. The header CRC can detect 
this error easily, as it does include dynamic 
stuff into the CRC calculation – this means 
from header CRC point of view, there is no 
misalignment and consequently the two bit 
errors cause no burst error.

bit flipbit flip

falsified signal

TX signal
Node T bit 0 bit 1

RX signal
Node R

bit boundary

bit 3 bit 4 bit 5bit 2

Glitch duration

Another way to cause such a temporal 
misalignment of the receiver is a bit drop and 
a bit insertion in the same frame [10], which 
could theoretically occur also in the CAN XL 
data field [10]. However, one bit insertion  
and one bit drop, both in the same frame,  
are assumed practically impossible to occur 
[10]. 

Figure 5: Burst Error – due to several bit 
errors

4.4 Overview of Error Types

Table 1 gives an overview to the error  
types known in CAN. The table also shows 
how an external cause (like a glitch on the 
bus lines) or an internal cause (like wrong 
system design) can create these errors. 
Further, it shows which error detection 
mechanism from chapter 2 can detect the 
error. 

5.	 Evaluation:	Burst	Error	Detection

Chapter 4.3 introduced two burst error  
types. As described, burst errors of  
type 2 (several bits are flipped, but no 
necessarily all) can be caused by several 
circum-stances. Based on the arguments 
from chapter 4.3 we conclude that this  
type 2 burst error is practically extremely 
unlikely to occur and therefore can be 
neglected.

bit flipbit flipbit flipbit flip

falsified signal

TX signal
Node T bit 0 bit 1

RX signal
Node R

bit boundary

bit 3 bit 4 bit 5bit 2

Table 1: Overview of Error Types in CAN



iCC 2020 CAN in Automation

58

Burst error type 1 (all bits in the burst are 
forced to the same value, e.g. by a glitch) is 
considered as very realistic. The remainder 
of this chapter evaluates if and how the error 
detection mechanisms can detect such a 
burst error.

Since CAN XL can be used at different bit 
rates, the same glitch on the bus lines can 
cause very different error scenarios for a 
receiver. Figure 6 visualizes the impact of a 
2 us glitch. At 500 kbit/s this leads to one bit 
error, while at 2 Mbit/s it leads to a burst error 
of 4 bit and at 8 Mbit/s it leads already to a 
burst error of 16 bit. 

Figure 6: Errors caused by a 2 us glitch at 
different bit rates

The diagram in Figure 7 shows the relation 
between glitch length and burst length in bits. 
Two glitch lengths are shown: 2 us and 5 us. 
These glitches translate to a burst duration of 
the same value. The actual glitch length that 
may occur on a specific CAN bus depends 
on the environment around the CAN bus. The 
authors in [7] observed in a very aggressive 
environment an average burst duration of 
5 us. For example, at 5 Mbit/s a 5 us glitch 
causes a burst length of 25 bit.

Figure 7 also shows the main CAN XL error 
detection mechanisms that are capable 
detecting burst errors.
 • Stuff	Rule	Check (see chapter 2.6): The  
  focus is here on the data phase where  
  each Sth bit is a fixed stuff bit.  
  Figure 7 assumes S=10. The arrow in  
  the figure shows, that this check can  
  detect any burst error with a length larger  
  than S bit. Shorter burst errors may also  
  be detected, but only if they hit a stuff  
  bit. With S=15 the effectiveness  
  decreases slightly for short burst lengths.

falsified signal

1 Mbit/s

glitch duration

½ Mbit/s

RXD signal

2 Mbit/s

4 Mbit/s

8 Mbit/s

 • Frame	CRC (FCRC, see chapter 2.4):  
  The frame can detect one burst error  
  with a length of up to 32 bit.
 • Header	CRC (HCRC, see chapter 2.4): 
  The header can detect one burst error  
  with a length of up to 13 bit.

We conclude that both, the header and frame 
CRC, can detect one short burst error and the 
stuff rule check can detect long burst errors. In 
sum, these mechanisms can detect all burst 
errors. 

Figure 7: Error detection mechanisms
versus burst errors

6.	 Evaluation:	Detection	of	Bit	Errors	and	 
	 Bit	Drops/Insertions

This chapter focuses on the two remaining 
error types: “bit errors” and “bit drops/ 
insertions”. It evaluates systematically  
whether they can be detected by CAN XL.  
The evaluation is limited to 5 bit errors  
(corresponds HD6) and 2 bit insertions/drops 
(corresponds to an equivalent of roughly  
> 4 bit errors). 

To simplify the description, the CAN XL frame 
is virtually partitioned into four parts. The 
evaluation in Table 2 is partitioned accordingly. 
In each part, both error types are listed. 
For each error type, the relevant number 
of occurrences of this error type are listed. 
Additionally, special error cases generated by 
these two error types at dynamic stuff bits are 
also listed. Consequently, each row of the table 
corresponds to one error case. For each error 
case, the table contains information about the 
misalignment of the receiver and the way in 
which the receiver detects the error. 

Bit rate [Mbit/s]

# burst length in bits

1 2 3 4 5 6 7 8 9 10

10

20

25

30

15

5

detection via 
Format & Stuff 
Rule Check

detection via 
HCRC

2 us glitch

5 us glitch

detection via 
FCRC



iCC 2020 CAN in Automation

59

Table 2: Systematic Overview of Error Cases



iCC 2020 CAN in Automation

60

7.	Summary	and	Conclusion

CAN XL has 5 major improvements regard-
ing Error Detection, compared to CAN FD. 
These are (1) header CRC, (2) 32 bit frame 
CRC, (3) fixed stuff bits in the data phase, (4) 
frame CRC additionally safeguards header, 
(5) Format Check Pattern.

Three major error types are known in CAN: 
(1) Bit error, (2) bit drops/insertions, and  
(3) burst errors. These error types are 
introduced in detail.

The paper shows how the error detection 
mechanisms can detect a burst error, where 
all bits in the burst are forced to the same 
value, independent of its length. Further, it 
shows systematically how bit errors and bit 
drops/insertions can be detected up to a given 
extent. We conclude that the error detection 
mechanisms in CAN XL can detect all known 
error types to a sufficient extent. This work 
can serve as basis for a review of the CAN XL 
error detection capabilities, which is planned 
by the SIG CAN XL. 

8.	 Acknowledgment

I want to thank Florian Hartwich and Christian 
Senger for the valuable discussions.

Author Dr. Arthur Mutter
Robert Bosch GmbH
Postfach 13 42  
DE-72703 Reutlingen
www.can.bosch.com

References
[1]   F. Hartwich, „CAN with Flexible 

Data-Rate,“ in Proceedings of the 
13th international CAN Conference, 
Hambach Castle, Germany, 2012.

[2]   ISO 011898-1:2015, Road vehicles — 
Controller area network (CAN) — Part 
1: Data link layer and physical signaling, 
2015.

[3]   F. Hartwich, “Introducing CAN XL into 
CAN Networks” in Proceedings of the 
17th international CAN Conference, 
Baden Baden, Germany, 2020.

[4]   J. Unruh, H. J. Mathony und K. H. Kaiser, 
„Error Detection Analysis of Automotive 
Communication Protocols,“ in SAE Int. 
Congress, No. 900699, Detroit, 1990.

[5]   J. Charzinski, “Performance of the 
Error Detection Mechanisms in CAN,” 
in Proceedings of the 1st International 
CAN Conference, 1994.

[6]   A. Mutter, „Robustness of a CAN FD Bus 
System – About Oscillator Tolerance 
and Edge Deviations,“ in Proceedings of 
the 14th international CAN Conference, 
Paris, France, 2013.

[7]   J. Ferreira, et al., “An Experiment 
to Assess Bit Error Rate in CAN”, 
in Proceedings of 3rd International 
Workshop of Real-Time Networks, 2004

[8]   N. Navet and Y.-Q. Song, “Performance 
and Fault tolerance of Real-Time 
Applications Distributed over CAN”, in 
Proceedings of the International CAN 
Conference, 1997.

[9]   C. Senger, “CRC Error Detection for 
CAN XL” in Proceedings of the 17th 
international CAN Conference, Baden 
Baden, Germany, 2020.

[10]  A. Mutter and F. Hartwich, “Advantages 
of CAN FD error detection mechanisms 
compared to classical CAN,” in 
Proceed-ings of The international CAN 
Conference, Vienna, Austria, 2015.


