
iCC 2020 CAN in Automation

134

Automated	workflow	for	generation	of	CANopen	 
system	monitoring	GUI

Heikki Saha, TK Engineering Oy

Introduction

Diagnostics is one of the most important but 
also most often too far postponed entity in 
control system design. It is an entity serving 
the entire development starting from the first 
unit tests, continuing to the final integration 
tests and finally in the system operation. 
During systems life cycle, diagnostics shall 
be maintained along with the evolving 
control features and system structure.
As already published in the literature, 
CANopen diagnostics is a comprehensive 
set of features, mainly powered by the 
communication protocols together with the 
standardized system design process, boot-
up procedure and synthesis of resulting 
information [1] [2] [3] [4]. Certain set of 
services support also efficient and reliable 
preparing for [5] and performing [6] series 
production. The design process may be 
expanded by data imports from other 

System	 monitoring	 features	 are	 needed	 throughout	 the	 systems	 life	 cycle,	 but	
development	 and	 maintenance	 of	 such	 are	 experienced	 as	 lower	 priority	 and	 less	
important	 than	 primary	 controls.	 This	 paper	 presents	 an	 automated	 workflow	 for	
generation	of	such	GUI,	based	on	CANopen	projects	and	targeted	for	typical	embedded	
displays.

Main	 challenge	 is	 that	 CANopen	 projects	 are	 not	 capable	 of	 define	 logical	 device	
locations	relative	to	each	other.	The	challenge	has	been	solved	by	creating	a	connection	
to	 electric	 schematics	 in	 order	 to	 determine	 logical	 device	 locations	 and	 device	
interconnections.	Further	challenge	is	how	to	assign	device	screen	coordinates.	 It	 is	
impossible	to	automate	assignment	in	general	and	computer	aided	manual	assignment	
has	been	developed	instead.	All	information	has	been	merged	into	a	GraphML	project	
file,	from	which	the	target	specific	GUI	configuration	may	be	generated.

Main	 focus	has	been	 in	a	workflow	enabling	efficient	work.	Computer	aids	has	been	
selected	 to	phases,	where	 full	 automation	does	not	make	sense.	Schematic	parsing	
has	been	isolated	as	a	component,	enabling	flexible	adaptation	to	various	schematic	
formats.	 The	 presented	 workflow	 intrinsically	 supports	 iterative	 development	 and	
efficient	information	re-use.	It	is	also	compatible	with	the	most	common	CANopen	and	
application	development	tools	in	the	market.

disciplines [7] or system level simulation  
model [8], improved adjustment of device 
parameters [9] and support for optional 
structures [10]. It has also been proved that 
information may be re-used in a managed 
way between the design phases [11], 
which is often required in practical system 
development projects. It can be summarized 
that each design activity inside the CANopen 
system design may be automated or 
improved by corresponding design tools.
While application code may be generated 
from system model [8] only, generation of 
system structure description requires at 
least electric schematics containing logical  
installation order of devices and CANopen 
project listing the system member devices. 
CANopen system description [12] has been 
supplemented by introducing GraphML node 
list format capable of representing screen 
coordinates and logical device locations 
relative to each other [13].



iCC 2020 CAN in Automation

135

Main challenges in the design and 
maintenance of a diagnostics entity are, 
that information content of CANopen 
system project is not sufficient and there 
does not exist an interface for adjusting 
the generated screen coordinates. Logical 
device locations shall be read from electric 
schematics, where the physical connections 
between the devices are described. As a 
consequence, information of two disciplines 
shall be combined in a managed way. It 
is worth of remembering, that any change 
in either CANopen system design or 
schematics shall be followed by refresh of 
the resulting GraphML description.
The automated workflow regarding the 
diagnostics has already been proved to 
work in a very basic form. Generation of 
GraphML format system description from 
CANopen project and schematics has been 
implemented by using legacy ProCANopen 
project as a backup source. Furthermore, 
diagnostics view components with 
generation of parameter data set for them 
from GraphML have been implemented. 
Main missing things are in the workflow 
– screen coordinate assignment at the 
top of system layout is missing as well as 
automated re-use of the screen coordinates 
between the design cycles.
There exist already reference designation 
mechanisms in the industry, which are 
widely used to provide assembly location 
specific addressing scheme [14] [15]. Such 
addressing schemes are typically used to 
link different disciplines together, commonly 
hydraulics and electrics. In order to support 
such linking from CANopen, reference 
designator entries had to be added into 
device descriptions [16]. The details, how 
to combine CANopen and schematics are 
outside the scope of this paper.
Main scope of this paper is a workflow and 
interface enabling the screed coordinate 
adjustment after GraphML generation. 
Cross-platform, open-source and 
consortium based tools, Python, Gephi and 
Inkscape was used to get open and generic 
implementation. The structure of this paper 
follows the design process phases within 
the focus of the paper by starting from 
collecting nodes information from CANopen 
project and electric schematics. The detailed 
description of the synthesis is not within the 

scope of this paper. Second, a workflow 
and example tools for screen coordinate 
editing are explained by keeping typical 
working scenarios in mind. Third, workflow 
for exchanging information with IEC 61131-
3 development environments is explained. 
The last topics are discussion around the 
proposed approach and concluding remarks.

GraphML	generation

GraphML node list has intentionally been 
designed to be an open, generic format 
for interchanging more comprehensive 
structural information of the entire system 
than before [13]. It naturally contains same 
core information than nodelist.cpj [12] and 
thus may be used as an improved CANopen 
project file.

Figure 1: Overview of GraphML node list 
generation

Main content is generated from CANopen, 
electric schematics and default layout 
based on a background graphics size. 
ProCANopen project was tested as a  
fallback method to determine installation 
order, but such requires special guidelines 
and tool usage and is thus not as consistent 
source for device locations as electric 
schematics.
Figure 1 illustrates the generation of a 
GraphML node list. Member devices of 
a system are available in the standard 
nodelist.cpj file of a CANopen project. 
Installation order of the devices are read 
from the electric schematics. Devices in 
both CANopen projects and schematics are 

cpj2graphml

G UI 
background

nodelis t.cpj

P roC ANopen 
project

S chematics

nodelis t. 
graphml

defcoord. 
graphml

3D
(future)



iCC 2020 CAN in Automation

136

identified by reference designators, which 
enables the information synthesis.
Screen background image dimensions are 
used to set screen size and the default 
device layout on the screen so, that devices 
are evenly located by default in order to make 
the locations easy to edit. If a file defcoords.
graphml exists, default coordinates are 
reused from it for devices included by it. 
When devices are added, only locations of 
the added devices need to be set manually. 
There is a reservation for the future to 
generate the screen background and bring 
the default device coordinates from e.g. 
3D-model as default coordinates.

Edit	GraphML	screen	coordinates

It shall always be possible to manually 
edit the screen coordinates. As long as 
the background graphics is manually 
designed, default coordinates are not 
available. Even if there were automated 
generation of background and export of 
defaults coordinates, manual adjustment 
may be required. Whenever an automated 
generation is used in conjunction with 
manual editing, it shall be possible to 
maintain results of manual editing by default 
in order to avoid design overhead and 
confusion caused by lost changes.

Figure 2: Overview of screen coordinate 
management

Screen coordinate management principle is 
show in Figure 2. Gephi is the most obvious 
tool for editing GraphML files. Its main 
disadvantage is still a missing support for 
background image. The feature has been 
tested in a special fork, but not included in a 

Inkscape

G ephi

editgraphml

nodelis t. 
graphml

nodelis t.svg
backgnd.png

defcoord. 
graphml

main branch. The example system layout in 
Gephi is shown in Figure 3.
Main advantage of GraphML is, that it 
is based on XML. Thus, implementing a 
simple wrapper tool was far simpler than 
writing an entire dedicated editor. Main idea 
is to convert the GraphML file into an SVG 
file before editing and the modified SVG file 
back to GraphML after editing. As an integral 
part of such conversion, background image 
may also be converted from any format to 
PNG to enable problem free usage of it. 
Furthermore, coordinate system is slightly 
different. X-axis is equal, but positive 
direction of Y-axis in GraphML points up and 
in SVG down. Image height is required for 
coordinate transformation.

Figure 3: Example system layout in Gephi 
(as GraphML)

Inkscape was selected as an editor, 
because it is open-source, operation system 
independent and free tool for editing SVG 
images. In addition, it supports the use 
of “rubber-band” connections between 
graphical blocks.
Overview of a GraphML representation is 
show in Figure 4. In addition, a separate 
backround image file is required, which 
is referenced by a corresponding graph 
attribute. Such description conforms to 
GraphML specification and is compatible 
with corresponding libraries, such as 
NetworkX [17]. Nodes are represented  
by node and interconnections as 
edge elements in GraphML. Required 
supplemental information may be assigned 
as attribute entries for graph, node and edge 
elements.
Structure of SVG representation is shown 
in Figure 5. The first advantage of SVG 
over GraphML is, that background image 
reference is both machine understandable 
and directly visible, because SVG enables 
including raster images as integral part of 
vector images. However, such raster image 
is still an independent file.



iCC 2020 CAN in Automation

137

Figure 4: Structural overview of GraphML 
representation

Figure 5: Structural overview of SVG 
representation

Nodes are represented by rectangle 
and interconnections as path elements. 
Required supplemental information may  
be assigned as attributes of the SVG  
rect and path elements. The entire layout 
shall be enclosed in a group, SVG g  
element.

node N1

node N2

node N3

G raphML

graph

edge E 1

edge E 2

- backround image 
reference attribute

rect N1

rect N2

rect N3

S VG

g

path E 1

path E 2

image

Figure 6: Example syste layout in Inkscape 
(as SVG)

Figure 7: Details of the selected device 
rectangle element in XML Editor window of 
Inkscape

Inkscape contains so called “Connector 
tool” [18] enabling rubber band connections 
between graphical elements, e.g. rectangles. 
A special attribute inkscape:connector-
type=“polyline“ of a path together with initial 
path end points located to the center point 
of source and destination node rectangles 
makes Inkscape to adapt element 
connections according to the element 
location changes.
An example of a system layout edit view in 
Inkscape is shown in Figure 6, where device 
REAR_IO has been selected. Advantage is, 
that with the explained options the device 
rectangles may be moved around screen 
layout so, that the interconnections scale 
and move accordingly.
Minor disadvantage of the SVG 
representation is, that device names should 
be included as separate text elements, 
which cannot be locked to the corresponding 
rectangles. Fortunately Inkscape contains 
an SVG Editor window, which shows the 
actively selected SVG element with it’s 
attributes, including device name as shown 
in Figure 7. The most interesting information 
within the context of device location 



iCC 2020 CAN in Automation

138

adjustment is the device name. Despite of 
the ability to change all information, all other 
attributes than screen location shall be 
adjusted only in the CANopen system tool 
to keep the project consistent.
As a final step, the edit manager asks,  
if the most recent changes shall be  
saved also to the default coordinates,  
where they automatically apply to the next 
export from the CANopen project and 
schematics.
Without such behavior, the changes do 
not systematically apply to the structure 
description updates and locations of all 
devices need to be manually assigned 
again.
Such workflow issue leads into the 
mandatory use of an edit manager tool 
anyway, because without such a tool a save 
to the default coordinates file would be up 
to the user and thus prone to the human 
mistakes.

Figure 8: Optional workflow enhancement 
enables saving new layout as default

The manager tool has been implemented 
so, that it may be integrated as a part of 
make procedure of a CANopen system tool. 
However, it can also be executed at any 
time for a given CANopen network project 
outside the scope of any make procedure. 

IEC	61131-3	integration

After adjustment of the screen coordinates 
it makes sense to export the system 
monitoring information to e.g. IEC61131-
3 development environment to deploy a 
system monitoring view [1] [13]. A reuse 
mechanism for coordinate quick fixes in an 
IEC61131-3 project is practically required to 

avoid to set too tight process constraints, 
which are commonly leading into ghost 
processes messing up the design work. 
Almost always GUI needs to be fine tuned 
during application development. As a 
generic structure description file, nodelist.
graphml provides open and easy integration 
interface, which is illustrated in Figure 9.

Figure 9: IEC 61131-3 integration powered 
by GraphML description file

GUI development environments may require 
graphic elements in certain format(s) and 
color depths. Thus, a dedicated task may 
be needed to adjust the screen background 
figure to the target specific format. Adjusting 
the background graphics may be integrated 
to the integral part of the system monitoring 
parameters generation. The details depend 
on the target constraints.

IEC	61131	software	development

System monitoring parameter structures 
may be imported to and exported from IEC 
development environment. It depends on 
the product, whether graphics is developed 
within IEC environment only or compiled 
with dedicated tool and elements referenced 
from IEC application. The result may be one 
or two binary files, depending on the target 
HMI.
As explained in existing literature [1], the 
basic functional elements of a system 
monitoring view may be standardized as 
a library functions. Imported parameters 
just configure the operation of such library 
functions.
While SW integration has been implemented 
for IEC61131-3 first, support for other 
frameworks may be easily added later 
on. The use of nodelist.graphml as an 
interface provides full freedom for future 
developments.

graphml2code

code2graphml

nodelis t. 
graphml

export.exp

import.exp

G raphics  
editor graphics

defcoord. 
graphml



iCC 2020 CAN in Automation

139

C O DE S Y S

export.exp

import.exp

graphics

app.bin

G raphics  
compiler

graphics .bin

Figure 10: Overview of the IEC 61131-3 
application development

Figure 10 provides an overview, how SW 
integration may work in CODESYS based 
platforms. The use of graphics elements 
depend on the selected architecture.

Discussion

GraphML is an excellent format capable of 
describing the entire network structures, 
including physical appearance. Gephi is 
the most natural open and free editor, but 
due to its constraints regarding background 
image, an alternative approach by using 
transformation to SVG during edit and 
Inkscape as an editor has been developed.
A systematic workflow is essential and 
definition of such enabled systematic 
integration of various state-of-the-art 
tools. Special emphasis has been put 
on information re-use, because many 
processes are defined too tightly and do not 
support practical ways of working, mostly by 
means of back-annotation of changes and 
re-use of information.
Focus has been in utilization of standardized 
interface concepts enabling utilization of the 
best tools in the market for each purpose. 
Standardized interfaces also enable 
updating the selection of the tools, when 
required. In the cases where standardized 
interfaces were not available, de-facto 
interfaces were used instead.
Advantage of the presented approach is, that 
GraphML is the standardized interface and 
enables practically limitless tool adaptations 
withing its scope of applicability. As in the 
presented approach, the tool specific 
adaptations may be realized in a generic 
process tools hiding the complexity from the 
users. It is up to the process implementation, 
which information connections will be 
activated.

After getting the screen coordinate 
management implemented, there exists 
a complete computer aided workflow and 
solid example tool chain from model based 
design to the system assembly and field 
service for both system configuration and 
application behavior, including system level 
exception management. Supporting tools 
enable efficient entering of new information, 
when automatic generation do not apply.
The use of open formats and third party 
SW tools resulted several advantages. 
The use of Python for own developments 
enable running of the tools on any operating 
system, independent of any single company. 
The selection of consortium-based tools 
Inkscape and Gephi ensures, that large 
consortia develop further important 
functions, which are not within the main 
scope of the design process development 
but which are providing great improvement 
by means of functionality and performance. 
It is also important, that free-of-charge 
tools may be used by anybody, without any 
commercial constraints.
Presented workflow and edit concept is not 
restricted to CANopen, it may be used for 
other bus systems, too. Some standardized 
bus systems do not cover configuration 
descriptions, which reduces the level of 
generality.
Some future research topics were 
recognized. First interesting topic will be, 
how node locations and background image 
could be automatically generated from e.g. 
system’s 3D-model. Second interesting 
topic will be, how PLCopen XML based 
interfacing of IEC 61131-3 development 
environments could be utilized instead of 
the legacy import and export interfaces.

Conclusions

Final major missing block from the entire 
generation process of a system monitoring 
view has been deployed. Thanks to the 
use of free-of-charge tools, commercial 
bottlenecks does not exist. OS independence 
of the related tools improve the usability and 
maintainability further.
It has been proved, that CANopen enables 
excellent support for managing the system 
level structural and configuration information 
throughout the design process, starting 



iCC 2020 CAN in Automation

140

from model-based design and ending to the 
assembly line and field service. Systematic 
configuration management improves both 
productivity and quality of the development 
by speeding up the design itself and 
drastically reducing number of design 
failures.
Following open interface standards enable 
both the use of generic processes and 
freedom to select optimal tools for each 
purpose, scale of operation and organization 
without breaking the process. Such freedom 
also helps in maintenance and further 
development of the process.
However, openness of CANopen is not 
enough. If the efficiency needs to be 
improved further, openness and open, 
standardized interfaces shall be improved 
also in the tools of other disciplines, CAD 
software and IEC 61131-3 SW development 
environments.

Dr. Heikki Saha
TK Engineering Oy
Hovioikeudenpuistikko 13 as 3
FL-65100 Vaasa
www.tke.fi

References
[1]  Saha H., Exception management in 

CANopen systems, CAN-Newsletter 
2/3013, CiA, 2013, pp. 12-17

[2]  Saha H., Experimental CANopen 
emergency error code (EEC) 
management, CAN-Newsletter 1/2013, 
CiA, 2013, pp. 12-18

[3]   Saha H., Improving development efficiency 
and quality of distributed IEC 61131-3 
applications with CANopen system design, 
Proceedings of the 13th iCC, CiA, 2012

[4]   Saha H., SI unit and scaling management 
in CANopen, CAN-Newsletter 3/2013, CiA, 
2013, pp. 30-34

[5]   Saha H., Accelerated transfer of CANopen 
projects into assembly and service,  
CAN Newsletter 4/2012, CiA, 2012, pp. 
16-20

[6]   Saha H., CANopen in series production, 
CAN Newsletter 3/2015, CiA, 2015, pp. 
8-11

[7]   Saha H., SI unit and scaling management 
in CANopen, CAN-Newsletter 3/2013, CiA, 
2013, pp. 30-34

[8]   Saha H., Model-based design of 
distributed mechatronic systems, CAN 
Newsletter 4/2014, CiA, 2014, pp. 38-45

[9]   Saha H., CANopen device configuration 
editors, CAN-Newsletter 4/2013, CiA, 
2013, pp. 30-33

[10] Saha H., Optional structures in CANopen 
projects, CAN-Newsletter 1/2014, CiA, 
2014, pp. 32-35

[11] Saha H., Systematic re-use of information, 
CAN-Newsletter 2/2014, CiA, 2014, pp. 
20-25

[12] Electronic Device Description,   Part   
3:   Network   variable handling and tool 
integration, CiA-306-3

[13] Helminen M., Salonen J., Saha H., 
Nykänen O., Koskinen K.T., Ranta P., 
Pohjolainen S., A new method and 
format for describing CANopen system 
topologies, Proceedings of the 13th iCC, 
CiA, 2012

[14] Industrial systems, installations and 
equipment and industrial products – 
Structuring principles and reference 
designations – Part 1: Basic rules, IEC 
81346-1, IEC, 85p.

[15] Industrial systems, installations and 
equipment and industrial products – 
Structuring principles and reference 
designations – Part 2: Classification of 
objects and codes for classes, IEC 81346-
2, IEC, 45 p.

[16] Electronic Device Description, Part 
1: Electronic Data Sheet and Device 
Configuration File, CiA-306-1, Version 
1.3.12, CiA, 2018

[17] Hagberg A., Schult D., Swart P., NetworkX 
Reference, Release 1.8.1, 2013, 470 p.

[18] Wybrow M., Connector Tool Tutorial, 
http://wiki.inkscape.org/wiki/index.php/
Connector_tool_tutorial (30.10.2019)


